Na podlagi druge alinee prvega odstavka 107. člena in prvega odstavka 91. člena Ustave Republike Slovenije izdajam
U K A Z
O RAZGLASITVI ZAKONA O RATIFIKACIJI DODATNEGA PROTOKOLA K SPORAZUMU MED REPUBLIKO SLOVENIJO IN MEDNARODNO AGENCIJO ZA ATOMSKO ENERGIJO O VAROVANJU V ZVEZI S POGODBO O NEŠIRJENJU JEDRSKEGA OROŽJA (MAEVPN)
Razglašam Zakon o ratifikaciji Dodatnega protokola k Sporazumu med Republiko Slovenijo in Mednarodno agencijo za atomsko energijo o varovanju v zvezi s pogodbo o neširjenju jedrskega orožja (MAEVPN), ki ga je sprejel Državni zbor Republike Slovenije na seji 19. julija 2000.
Št. 001-22-138/00
Ljubljana, dne 27. julija 2000
Predsednik
Republike Slovenije
Milan Kučan l. r.
Z A K O N
O RATIFIKACIJI DODATNEGA PROTOKOLA K SPORAZUMU MED REPUBLIKO SLOVENIJO IN MEDNARODNO AGENCIJO ZA ATOMSKO ENERGIJO O VAROVANJU V ZVEZI S POGODBO O NEŠIRJENJU JEDRSKEGA OROŽJA (MAEVPN)
1. člen
Ratificira se Dodatni protokol k Sporazumu med Republiko Slovenijo in Mednarodno agencijo za atomsko energijo o varovanju v zvezi s pogodbo o neširjenju jedrskega orožja, podpisan 26.novembra 1998 na Dunaju.
2. člen
Dodatni protokol se v izvirniku v angleškem jeziku in v prevodu v slovenskem jeziku glasi:
PROTOCOL ADDITIONAL TO THE AGREEMENT BETWEEN THE REPUBLIC OF SLOVENIA AND THE INTERNATIONAL ATOMIC ENERGY AGENCY FOR THE APPLICATION OF SAFEGUARDS IN CONNECTION WITH THE TREATY ON THE NON-PROLIFERATION OF NUCLEAR WEAPONS
WHEREAS the Republic of Slovenia (hereinafter referred to as “Slovenia”) and the International Atomic Energy Agency (hereinafter referred to as the “Agency”) are parties to an Agreement for the Application of Safeguards in Connection with the Treaty on the Non-Proliferation of Nuclear Weapons (hereinafter referred to as the “Safeguards Agreement”), which entered into force on 1 August 1997;
AWARE OF the desire of the international community to further enhance nuclear non-proliferation by strengthening the effectiveness and improving the efficiency of the Agency’s safeguards system;
RECALLING that the Agency must take into account in the implementation of safeguards the need to: avoid hampering the economic and technological development of Slovenia or international co-operation in the field of peaceful nuclear activities; respect health, safety, physical protection and other security provisions in force and the rights of individuals; and take every precaution to protect commercial, technological and industrial secrets as well as other confidential information coming to its knowledge;
WHEREAS the frequency and intensity of activities described in this Protocol shall be kept to the minimum consistent with the objective of strengthening the effectiveness and improving the efficiency of Agency safeguards;
NOW THEREFORE Slovenia and the Agency have agreed as follows:
RELATIONSHIP BETWEEN THE PROTOCOL AND THE SAFEGUARDS AGREEMENT
Article 1
The provisions of the Safeguards Agreement shall apply to this Protocol to the extent that they are relevant to and compatible with the provisions of this Protocol. In case of conflict between the provisions of the Safeguards Agreement and those of this Protocol, the provisions of this Protocol shall apply.
PROVISION OF INFORMATION
Article 2
a. Slovenia shall provide the Agency with a declaration containing:
(i) A general description of and information specifying the location of nuclear fuel cycle-related research and development activities not involving nuclear material carried out anywhere that are funded, specifically authorized or controlled by, or carried out on behalf of, Slovenia.
(ii) Information identified by the Agency on the basis of expected gains in effectiveness or efficiency, and agreed to by Slovenia, on operational activities of safeguards relevance at facilities and at locations outside facilities where nuclear material is customarily used.
(iii) A general description of each building on each site, including its use and, if not apparent from that description, its contents. The description shall include a map of the site.
(iv) A description of the scale of operations for each location engaged in the activities specified in Annex I to this Protocol.
(v) Information specifying the location, operational status and the estimated annual production capacity of uranium mines and concentration plants and thorium concentration plants, and the current annual production of such mines and concentration plants for Slovenia as a whole. Slovenia shall provide, upon request by the Agency, the current annual production of an individual mine or concentration plant. The provision of this information does not require detailed nuclear material accountancy.
(vi) Information regarding source material which has not reached the composition and purity suitable for fuel fabrication or for being isotopically enriched, as follows:
(a) The quantities, the chemical composition, the use or intended use of such material, whether in nuclear or non-nuclear use, for each location in Slovenia at which the material is present in quantities exceeding ten metric tons of uranium and/or twenty metric tons of thorium, and for other locations with quantities of more than one metric ton, the aggregate for Slovenia as a whole if the aggregate exceeds ten metric tons of uranium or twenty metric tons of thorium. The provision of this information does not require detailed nuclear material accountancy;
(b) The quantities, the chemical composition and the destination of each export out of Slovenia, of such material for specifically non-nuclear purposes in quantities exceeding:
(1) Ten metric tons of uranium, or for successive exports of uranium from Slovenia to the same State, each of less than ten metric tons, but exceeding a total of ten metric tons for the year;
(2) Twenty metric tons of thorium, or for successive exports of thorium from Slovenia to the same State, each of less than twenty metric tons, but exceeding a total of twenty metric tons for the year;
(c) The quantities, chemical composition, current location and use or intended use of each import into Slovenia of such material for specifically non-nuclear purposes in quantities exceeding:
(1) Ten metric tons of uranium, or for successive imports of uranium into Slovenia each of less than ten metric tons, but exceeding a total of ten metric tons for the year;
(2) Twenty metric tons of thorium, or for successive imports of thorium into Slovenia each of less than twenty metric tons, but exceeding a total of twenty metric tons for the year;
it being understood that there is no requirement to provide information on such material intended for a non-nuclear use once it is in its non-nuclear end-use form.
(vii) (a) Information regarding the quantities, uses and locations of nuclear material exempted from safeguards pursuant to Article 37 of the Safeguards Agreement;
(b) Information regarding the quantities (which may be in the form of estimates) and uses at each location, of nuclear material exempted from safeguards pursuant to Article 36(b) of the Safeguards Agreement but not yet in a non-nuclear end-use form, in quantities exceeding those set out in Article 37 of the Safeguards Agreement. The provision of this information does not require detailed nuclear material accountancy.
(viii) Information regarding the location or further processing of intermediate or high-level waste containing plutonium, high enriched uranium or uranium-233 on which safeguards have been terminated pursuant to Article 11 of the Safeguards Agreement. For the purpose of this paragraph, “further processing” does not include repackaging of the waste or its further conditioning not involving the separation of elements, for storage or disposal.
(ix) The following information regarding specified equipment and non-nuclear material listed in Annex II:
(a) For each export out of Slovenia of such equipment and material: the identity, quantity, location of intended use in the receiving State and date or, as appropriate, expected date, of export;
(b) Upon specific request by the Agency, confirmation by Slovenia, as importing State, of information provided to the Agency by another State concerning the export of such equipment and material to Slovenia.
(x) General plans for the succeeding ten-year period relevant to the development of the nuclear fuel cycle (including planned nuclear fuel cycle-related research and development activities) when approved by the appropriate authorities in Slovenia.
b. Slovenia shall make every reasonable effort to provide the Agency with the following information:
(i) A general description of and information specifying the location of nuclear fuel cycle-related research and development activities not involving nuclear material which are specifically related to enrichment, reprocessing of nuclear fuel or the processing of intermediate or high-level waste containing plutonium, high enriched uranium or uranium-233 that are carried out anywhere in Slovenia but which are not funded, specifically authorized or controlled by, or carried out on behalf of, Slovenia. For the purpose of this paragraph, “processing” of intermediate or high-level waste does not include repackaging of the waste or its conditioning not involving the separation of elements, for storage or disposal.
(ii) A general description of activities and the identity of the person or entity carrying out such activities, at locations identified by the Agency outside a site which the Agency considers might be functionally related to the activities of that site. The provision of this information is subject to a specific request by the Agency. It shall be provided in consultation with the Agency and in a timely fashion.
c. Upon request by the Agency, Slovenia shall provide amplifications or clarifications of any information it has provided under this Article, in so far as relevant for the purpose of safeguards.
Article 3
a. Slovenia shall provide to the Agency the information identified in Article 2.a.(i), (iii), (iv), (v), (vi)(a), (vii) and (x) and Article 2.b.(i) within 180 days of the entry into force of this Protocol.
b. Slovenia shall provide to the Agency, by 15 May of each year, updates of the information referred to in paragraph a. above for the period covering the previous calendar year. If there has been no change to the information previously provided, Slovenia shall so indicate.
c. Slovenia shall provide to the Agency, by 15 May of each year, the information identified in Article 2.a.(vi)(b) and (c) for the period covering the previous calendar year.
d. Slovenia shall provide to the Agency on a quarterly basis the information identified in Article 2.a.(ix)(a). This information shall be provided within sixty days of the end of each quarter.
e. Slovenia shall provide to the Agency the information identified in Article 2.a.(viii) 180 days before further processing is carried out and, by 15 May of each year, information on changes in location for the period covering the previous calendar year.
f. Slovenia and the Agency shall agree on the timing and frequency of the provision of the information identified in Article 2.a.(ii).
g. Slovenia shall provide to the Agency the information in Article 2.a.(ix)(b) within sixty days of the Agency’s request.
COMPLEMENTARY ACCESS
Article 4
The following shall apply in connection with the implementation of complementary access under Article 5 of this Protocol:
a. The Agency shall not mechanistically or systematically seek to verify the information referred to in Article 2; however, the Agency shall have access to:
(i) Any location referred to in Article 5.a.(i) or (ii) on a selective basis in order to assure the absence of undeclared nuclear material and activities;
(ii) Any location referred to in Article 5.b. or c. to resolve a question relating to the correctness and completeness of the information provided pursuant to Article 2 or to resolve an inconsistency relating to that information;
(iii) Any location referred to in Article 5.a.(iii) to the extent necessary for the Agency to confirm, for safeguards purposes, Slovenia’s declaration of the decommissioned status of a facility or of a location outside facilities where nuclear material was customarily used.
b. (i) Except as provided in paragraph (ii) below, the Agency shall give Slovenia advance notice of access of at least 24 hours;
(ii) For access to any place on a site that is sought in conjunction with design information verification visits or ad hoc or routine inspections on that site, the period of advance notice shall, if the Agency so requests, be at least two hours but, in exceptional circumstances, it may be less than two hours.
c. Advance notice shall be in writing and shall specify the reasons for access and the activities to be carried out during such access.
d. In the case of a question or inconsistency, the Agency shall provide Slovenia with an opportunity to clarify and facilitate the resolution of the question or inconsistency. Such an opportunity will be provided before a request for access, unless the Agency considers that delay in access would prejudice the purpose for which the access is sought. In any event, the Agency shall not draw any conclusions about the question or inconsistency until Slovenia has been provided with such an opportunity.
e. Unless otherwise agreed to by Slovenia, access shall only take place during regular working hours.
f. Slovenia shall have the right to have Agency inspectors accompanied during their access by representatives of Slovenia, provided that the inspectors shall not thereby be delayed or otherwise impeded in the exercise of their functions.
Article 5
Slovenia shall provide the Agency with access to:
a. (i) Any place on a site;
(ii) Any location identified by Slovenia under Article 2.a.(v)-(viii);
(iii) Any decommissioned facility or decommissioned location outside facilities where nuclear material was customarily used.
b. Any location identified by Slovenia under Article 2.a.(i), Article 2.a.(iv), Article 2.a.(ix)(b) or Article 2.b., other than those referred to in paragraph a.(i) above, provided that if Slovenia is unable to provide such access, Slovenia shall make every reasonable effort to satisfy Agency requirements, without delay, through other means.
c. Any location specified by the Agency, other than locations referred to in paragraphs a. and b. above, to carry out location-specific environmental sampling, provided that if Slovenia is unable to provide such access, Slovenia shall make every reasonable effort to satisfy Agency requirements, without delay, at adjacent locations or through other means.
Article 6
When implementing Article 5, the Agency may carry out the following activities:
a. For access in accordance with Article 5.a.(i) or (iii): visual observation; collection of environmental samples; utilization of radiation detection and measurement devices; application of seals and other identifying and tamper indicating devices specified in Subsidiary Arrangements; and other objective measures which have been demonstrated to be technically feasible and the use of which has been agreed by the Board of Governors (hereinafter referred to as the “Board”) and following consultations between the Agency and Slovenia.
b. For access in accordance with Article 5.a.(ii): visual observation; item counting of nuclear material; non-destructive measurements and sampling; utilization of radiation detection and measurement devices; examination of records relevant to the quantities, origin and disposition of the material; collection of environmental samples; and other objective measures which have been demonstrated to be technically feasible and the use of which has been agreed by the Board and following consultations between the Agency and Slovenia.
c. For access in accordance with Article 5.b.: visual observation; collection of environmental samples; utilization of radiation detection and measurement devices; examination of safeguards relevant production and shipping records; and other objective measures which have been demonstrated to be technically feasible and the use of which has been agreed by the Board and following consultations between the Agency and Slovenia.
d. For access in accordance with Article 5.c.: collection of environmental samples and, in the event the results do not resolve the question or inconsistency at the location specified by the Agency pursuant to Article 5.c., utilization at that location of visual observation, radiation detection and measurement devices, and, as agreed by Slovenia and the Agency, other objective measures.
Article 7
a. Upon request by Slovenia, the Agency and Slovenia shall make arrangements for managed access under this Protocol in order to prevent the dissemination of proliferation sensitive information, to meet safety or physical protection requirements, or to protect proprietary or commercially sensitive information. Such arrangements shall not preclude the Agency from conducting activities necessary to provide credible assurance of the absence of undeclared nuclear material and activities at the location in question, including the resolution of a question relating to the correctness and completeness of the information referred to in Article 2 or of an inconsistency relating to that information.
b. Slovenia may, when providing the information referred to in Article 2, inform the Agency of the places at a site or location at which managed access may be applicable.
c. Pending the entry into force of any necessary Subsidiary Arrangements, Slovenia may have recourse to managed access consistent with the provisions of paragraph a. above.
Article 8
Nothing in this Protocol shall preclude Slovenia from offering the Agency access to locations in addition to those referred to in Articles 5 and 9 or from requesting the Agency to conduct verification activities at a particular location. The Agency shall, without delay, make every reasonable effort to act upon such a request.
Article 9
Slovenia shall provide the Agency with access to locations specified by the Agency to carry out wide-area environmental sampling, provided that if Slovenia is unable to provide such access it shall make every reasonable effort to satisfy Agency requirements at alternative locations. The Agency shall not seek such access until the use of wide-area environmental sampling and the procedural arrangements therefor have been approved by the Board and following consultations between the Agency and Slovenia.
Article 10
The Agency shall inform Slovenia of:
a. The activities carried out under this Protocol, including those in respect of any questions or inconsistencies the Agency had brought to the attention of Slovenia, within sixty days of the activities being carried out by the Agency.
b. The results of activities in respect of any questions or inconsistencies the Agency had brought to the attention of Slovenia, as soon as possible but in any case within thirty days of the results being established by the Agency.
c. The conclusions it has drawn from its activities under this Protocol. The conclusions shall be provided annually.
DESIGNATION OF AGENCY INSPECTORS
Article 11
a. (i) The Director General shall notify Slovenia of the Board’s approval of any Agency official as a safeguards inspector. Unless Slovenia advises the Director General of its rejection of such an official as an inspector for Slovenia within three months of receipt of notification of the Board’s approval, the inspector so notified to Slovenia shall be considered designated to Slovenia.
(ii) The Director General, acting in response to a request by Slovenia or on his own initiative, shall immediately inform Slovenia of the withdrawal of the designation of any official as an inspector for Slovenia.
b. A notification referred to in paragraph a. above shall be deemed to be received by Slovenia seven days after the date of the transmission by registered mail of the notification by the Agency to Slovenia.
VISAS
Article 12
Slovenia shall, within one month of the receipt of a request therefor, provide the designated inspector specified in the request with appropriate multiple entry/exit and/or transit visas, where required, to enable the inspector to enter and remain on the territory of Slovenia for the purpose of carrying out his/her functions. Any visas required shall be valid for at least one year and shall be renewed, as required, to cover the duration of the inspector’s designation to Slovenia.
SUBSIDIARY ARRANGEMENTS
Article 13
a. Where Slovenia or the Agency indicates that it is necessary to specify in Subsidiary Arrangements how measures laid down in this Protocol are to be applied, Slovenia and the Agency shall agree on such Subsidiary Arrangements within ninety days of the entry into force of this Protocol or, where the indication of the need for such Subsidiary Arrangements is made after the entry into force of this Protocol, within ninety days of the date of such indication.
b. Pending the entry into force of any necessary Subsidiary Arrangements, the Agency shall be entitled to apply the measures laid down in this Protocol.
COMMUNICATIONS SYSTEMS
Article 14
a. Slovenia shall permit and protect free communications by the Agency for official purposes between Agency inspectors in Slovenia and Agency Headquarters and/or Regional Offices, including attended and unattended transmission of information generated by Agency containment and/or surveillance or measurement devices. The Agency shall have, in consultation with Slovenia, the right to make use of internationally established systems of direct communications, including satellite systems and other forms of telecommunication, not in use in Slovenia. At the request of Slovenia or the Agency, details of the implementation of this paragraph with respect to the attended or unattended transmission of information generated by Agency containment and/or surveillance or measurement devices shall be specified in the Subsidiary Arrangements.
b. Communication and transmission of information as provided for in paragraph a. above shall take due account of the need to protect proprietary or commercially sensitive information or design information which Slovenia regards as being of particular sensitivity.
PROTECTION OF CONFIDENTIAL INFORMATION
Article 15
a. The Agency shall maintain a stringent regime to ensure effective protection against disclosure of commercial, technological and industrial secrets and other confidential information coming to its knowledge, including such information coming to the Agency’s knowledge in the implementation of this Protocol.
b. The regime referred to in paragraph a. above shall include, among others, provisions relating to:
(i) General principles and associated measures for the handling of confidential information;
(ii) Conditions of staff employment relating to the protection of confidential information;
(iii) Procedures in cases of breaches or alleged breaches of confidentiality.
c. The regime referred to in paragraph a. above shall be approved and periodically reviewed by the Board.
ANNEXES
Article 16
a. The Annexes to this Protocol shall be an integral part thereof. Except for the purposes of amendment of the Annexes, the term “Protocol” as used in this instrument means the Protocol and the Annexes together.
b. The list of activities specified in Annex I, and the list of equipment and material specified in Annex II, may be amended by the Board upon the advice of an open-ended working group of experts established by the Board. Any such amendment shall take effect four months after its adoption by the Board.
ENTRY INTO FORCE
Article 17
a. This Protocol shall enter into force on the date on which the Agency receives from Slovenia written notification that Slovenia’s statutory and constitutional requirements for entry into force have been met.
b. Slovenia may, at any date before this Protocol enters into force, declare that it will apply this Protocol provisionally.
c. The Director General shall promptly inform all Member States of the Agency of any declaration of provisional application of, and of the entry into force of, this Protocol.
DEFINITIONS
Article 18
For the purpose of this Protocol:
a. Nuclear fuel cycle-related research and development activities means those activities which are specifically related to any process or system development aspect of any of the following:
– conversion of nuclear material,
– enrichment of nuclear material,
– nuclear fuel fabrication,
– reactors,
– critical facilities,
– reprocessing of nuclear fuel,
– processing (not including repackaging or conditioning not involving the separation of elements, for storage or disposal) of intermediate or high-level waste containing plutonium, high enriched uranium or uranium-233,
but do not include activities related to theoretical or basic scientific research or to research and development on industrial radioisotope applications, medical, hydrological and agricultural applications, health and environmental effects and improved maintenance.
b. Site means that area delimited by Slovenia in the relevant design information for a facility, including a closed-down facility, and in the relevant information on a location outside facilities where nuclear material is customarily used, including a closed-down location outside facilities where nuclear material was customarily used (this is limited to locations with hot cells or where activities related to conversion, enrichment, fuel fabrication or reprocessing were carried out). It shall also include all installations, co-located with the facility or location, for the provision or use of essential services, including: hot cells for processing irradiated materials not containing nuclear material; installations for the treatment, storage and disposal of waste; and buildings associated with specified activities identified by Slovenia under Article 2.a.(iv) above.
c. Decommissioned facility or decommissioned location outside facilities means an installation or location at which residual structures and equipment essential for its use have been removed or rendered inoperable so that it is not used to store and can no longer be used to handle, process or utilize nuclear material.
d. Closed-down facility or closed-down location outside facilities means an installation or location where operations have been stopped and the nuclear material removed but which has not been decommissioned.
e. High enriched uranium means uranium containing 20 percent or more of the isotope uranium-235.
f. Location-specific environmental sampling means the collection of environmental samples (e.g., air, water, vegetation, soil, smears) at, and in the immediate vicinity of, a location specified by the Agency for the purpose of assisting the Agency to draw conclusions about the absence of undeclared nuclear material or nuclear activities at the specified location.
g. Wide-area environmental sampling means the collection of environmental samples (e.g., air, water, vegetation, soil, smears) at a set of locations specified by the Agency for the purpose of assisting the Agency to draw conclusions about the absence of undeclared nuclear material or nuclear activities over a wide area.
h. Nuclear material means any source or any special fissionable material as defined in Article XX of the Statute. The term source material shall not be interpreted as applying to ore or ore residue. Any determination by the Board under Article XX of the Statute of the Agency after the entry into force of this Protocol which adds to the materials considered to be source material or special fissionable material shall have effect under this Protocol only upon acceptance by Slovenia.
i. Facility means:
(i) A reactor, a critical facility, a conversion plant, a fabrication plant, a reprocessing plant, an isotope separation plant or a separate storage installation; or
(ii) Any location where nuclear material in amounts greater than one effective kilogram is customarily used.
j. Location outside facilities means any installation or location, which is not a facility, where nuclear material is customarily used in amounts of one effective kilogram or less.
DONE in Vienna on the 26 day of November 1998 in duplicate in the English language.
For the
REPUBLIC OF SLOVENIA:
mag. Miroslav Gregorič, (s)
For the
INTERNATIONAL ATOMIC
ENERGY AGENCY:
Mohamed ElBaradei, (s)
ANNEX I
LIST OF ACTIVITIES REFERRED TO IN ARTICLE 2.a.(iv) OF THE PROTOCOL
(i) The manufacture of centrifuge rotor tubes or the assembly of gas centrifuges.
Centrifuge rotor tubes means thin-walled cylinders as described in entry 5.1.1(b) of Annex II.
Gas centrifuges means centrifuges as described in the Introductory Note to entry 5.1 of Annex II.
(ii) The manufacture of diffusion barriers.
Diffusion barriers means thin, porous filters as described in entry 5.3.1(a) of Annex II.
(iii) The manufacture or assembly of laser-based systems.
Laser-based systems means systems incorporating those items as described in entry 5.7 of Annex II.
(iv) The manufacture or assembly of electromagnetic isotope separators.
Electromagnetic isotope separators means those items referred to in entry 5.9.1 of Annex II containing ion sources as described in 5.9.1(a) of Annex II.
(v) The manufacture or assembly of columns or extraction equipment.
Columns or extraction equipment means those items as described in entries 5.6.1, 5.6.2, 5.6.3, 5.6.5, 5.6.6, 5.6.7 and 5.6.8 of Annex II.
(vi) The manufacture of aerodynamic separation nozzles or vortex tubes.
Aerodynamic separation nozzles or vortex tubes means separation nozzles and vortex tubes as described respectively in entries 5.5.1 and 5.5.2 of Annex II.
(vii) The manufacture or assembly of uranium plasma generation systems.
Uranium plasma generation systems means systems for the generation of uranium plasma as described in entry 5.8.3 of Annex II.
(viii) The manufacture of zirconium tubes.
Zirconium tubes means tubes as described in entry 1.6 of Annex II.
(ix) The manufacture or upgrading of heavy water or deuterium.
Heavy water or deuterium means deuterium, heavy water (deuterium oxide) and any other deuterium compound in which the ratio of deuterium to hydrogen atoms exceeds 1:5000.
(x) The manufacture of nuclear grade graphite.
Nuclear grade graphite means graphite having a purity level better than 5 parts per million boron equivalent and with a density greater than 1.50 g/cm3 .
(xi) The manufacture of flasks for irradiated fuel.
A flask for irradiated fuel means a vessel for the transportation and/or storage of irradiated fuel which provides chemical, thermal and radiological protection, and dissipates decay heat during handling, transportation and storage.
(xii) The manufacture of reactor control rods.
Reactor control rods means rods as described in entry 1.4 of Annex II.
(xiii) The manufacture of criticality safe tanks and vessels.
Criticality safe tanks and vessels means those items as described in entries 3.2 and 3.4 of Annex II.
(xiv) The manufacture of irradiated fuel element chopping machines.
Irradiated fuel element chopping machines means equipment as described in entry 3.1 of Annex II.
(xv) The construction of hot cells.
Hot cells means a cell or interconnected cells totalling at least 6 m3 in volume with shielding equal to or greater than the equivalent of 0.5 m of concrete, with a density of 3.2 g/cm3 or greater, outfitted with equipment for remote operations.
ANNEX II
LIST OF SPECIFIED EQUIPMENT AND NON-NUCLEAR MATERIAL FOR THE REPORTING OF EXPORTS AND IMPORTS ACCORDING TO ARTICLE 2.a.(ix)
1. Reactors and equipment therefor
1.1. Complete nuclear reactors
Nuclear reactors capable of operation so as to maintain a controlled self-sustaining fission chain reaction, excluding zero energy reactors, the latter being defined as reactors with a designed maximum rate of production of plutonium not exceeding 100 grams per year.
EXPLANATORY NOTE
A “nuclear reactor” basically includes the items within or attached directly to the reactor vessel, the equipment which controls the level of power in the core, and the components which normally contain or come in direct contact with or control the primary coolant of the reactor core.
It is not intended to exclude reactors which could reasonably be capable of modification to produce significantly more than 100 grams of plutonium per year. Reactors designed for sustained operation at significant power levels, regardless of their capacity for plutonium production, are not considered as “zero energy reactors”.
1.2. Reactor pressure vessels
Metal vessels, as complete units or as major shop-fabricated parts therefor, which are especially designed or prepared to contain the core of a nuclear reactor as defined in paragraph 1.1. above and are capable of withstanding the operating pressure of the primary coolant.
EXPLANATORY NOTE
A top plate for a reactor pressure vessel is covered by item 1.2. as a major shop-fabricated part of a pressure vessel.
Reactor internals (e.g. support columns and plates for the core and other vessel internals, control rod guide tubes, thermal shields, baffles, core grid plates, diffuser plates, etc.) are normally supplied by the reactor supplier. In some cases, certain internal support components are included in the fabrication of the pressure vessel. These items are sufficiently critical to the safety and reliability of the operation of the reactor (and, therefore, to the guarantees and liability of the reactor supplier), so that their supply, outside the basic supply arrangement for the reactor itself, would not be common practice. Therefore, although the separate supply of these unique, especially designed and prepared, critical, large and expensive items would not necessarily be considered as falling outside the area of concern, such a mode of supply is considered unlikely.
1.3. Reactor fuel charging and discharging machines
Manipulative equipment especially designed or prepared for inserting or removing fuel in a nuclear reactor as defined in paragraph 1.1. above capable of on-load operation or employing technically sophisticated positioning or alignment features to allow complex off-load fuelling operations such as those in which direct viewing of or access to the fuel is not normally available.
1.4. Reactor control rods
Rods especially designed or prepared for the control of the reaction rate in a nuclear reactor as defined in paragraph 1.1. above.
EXPLANATORY NOTE
This item includes, in addition to the neutron absorbing part, the support or suspension structures therefor if supplied separately.
1.5. Reactor pressure tubes
Tubes which are especially designed or prepared to contain fuel elements and the primary coolant in a reactor as defined in paragraph 1.1. above at an operating pressure in excess of 5.1 MPa (740 psi).
1.6. Zirconium tubes
Zirconium metal and alloys in the form of tubes or assemblies of tubes, and in quantities exceeding 500 kg in any period of 12 months, especially designed or prepared for use in a reactor as defined in paragraph 1.1. above, and in which the relation of hafnium to zirconium is less than 1:500 parts by weight.
1.7. Primary coolant pumps
Pumps especially designed or prepared for circulating the primary coolant for nuclear reactors as defined in paragraph 1.1. above.
EXPLANATORY NOTE
Especially designed or prepared pumps may include elaborate sealed or multi-sealed systems to prevent leakage of primary coolant, canned-driven pumps, and pumps with inertial mass systems. This definition encompasses pumps certified to NC-1 or equivalent standards.
2. Non-nuclear materials for reactors
2.1. Deuterium and heavy water
Deuterium, heavy water (deuterium oxide) and any other deuterium compound in which the ratio of deuterium to hydrogen atoms exceeds 1:5000 for use in a nuclear reactor as defined in paragraph 1.1. above in quantities exceeding 200 kg of deuterium atoms for any one recipient country in any period of 12 months.
2.2. Nuclear grade graphite
Graphite having a purity level better than 5 parts per million boron equivalent and with a density greater than 1.50 g/cm3 for use in a nuclear reactor as defined in paragraph 1.1. above in quantities exceeding 3 x 104 kg (30 metric tons) for any one recipient country in any period of 12 months.
NOTE
For the purpose of reporting, the Government will determine whether or not the exports of graphite meeting the above specifications are for nuclear reactor use.
3. Plants for the reprocessing of irradiated fuel elements, and equipment especially designed or prepared therefor
INTRODUCTORY NOTE
Reprocessing irradiated nuclear fuel separates plutonium and uranium from intensely radioactive fission products and other transuranic elements. Different technical processes can accomplish this separation. However, over the years Purex has become the most commonly used and accepted process. Purex involves the dissolution of irradiated nuclear fuel in nitric acid, followed by separation of the uranium, plutonium, and fission products by solvent extraction using a mixture of tributyl phosphate in an organic diluent.
Purex facilities have process functions similar to each other, including: irradiated fuel element chopping, fuel dissolution, solvent extraction, and process liquor storage. There may also be equipment for thermal denitration of uranium nitrate, conversion of plutonium nitrate to oxide or metal, and treatment of fission product waste liquor to a form suitable for long term storage or disposal. However, the specific type and configuration of the equipment performing these functions may differ between Purex facilities for several reasons, including the type and quantity of irradiated nuclear fuel to be reprocessed and the intended disposition of the recovered materials, and the safety and maintenance philosophy incorporated into the design of the facility.
A “plant for the reprocessing of irradiated fuel elements” includes the equipment and components which normally come in direct contact with and directly control the irradiated fuel and the major nuclear material and fission product processing streams.
These processes, including the complete systems for plutonium conversion and plutonium metal production, may be identified by the measures taken to avoid criticality (e.g. by geometry), radiation exposure (e.g. by shielding), and toxicity hazards (e.g. by containment).
Items of equipment that are considered to fall within the meaning of the phrase “and equipment especially designed or prepared” for the reprocessing of irradiated fuel elements include:
3.1. Irradiated fuel element chopping machines
INTRODUCTORY NOTE
This equipment breaches the cladding of the fuel to expose the irradiated nuclear material to dissolution. Especially designed metal cutting shears are the most commonly employed, although advanced equipment, such as lasers, may be used.
Remotely operated equipment especially designed or prepared for use in a reprocessing plant as identified above and intended to cut, chop or shear irradiated nuclear fuel assemblies, bundles or rods.
3.2. Dissolvers
INTRODUCTORY NOTE
Dissolvers normally receive the chopped-up spent fuel. In these critically safe vessels, the irradiated nuclear material is dissolved in nitric acid and the remaining hulls removed from the process stream.
Critically safe tanks (e.g. small diameter, annular or slab tanks) especially designed or prepared for use in a reprocessing plant as identified above, intended for dissolution of irradiated nuclear fuel and which are capable of withstanding hot, highly corrosive liquid, and which can be remotely loaded and maintained.
3.3. Solvent extractors and solvent extraction equipment
INTRODUCTORY NOTE
Solvent extractors both receive the solution of irradiated fuel from the dissolvers and the organic solution which separates the uranium, plutonium, and fission products. Solvent extraction equipment is normally designed to meet strict operating parameters, such as long operating lifetimes with no maintenance requirements or adaptability to easy replacement, simplicity of operation and control, and flexibility for variations in process conditions.
Especially designed or prepared solvent extractors such as packed or pulse columns, mixer settlers or centrifugal contactors for use in a plant for the reprocessing of irradiated fuel. Solvent extractors must be resistant to the corrosive effect of nitric acid. Solvent extractors are normally fabricated to extremely high standards (including special welding and inspection and quality assurance and quality control techniques) out of low carbon stainless steels, titanium, zirconium, or other high quality materials.
3.4. Chemical holding or storage vessels
INTRODUCTORY NOTE
Three main process liquor streams result from the solvent extraction step. Holding or storage vessels are used in the further processing of all three streams, as follows:
(a) The pure uranium nitrate solution is concentrated by evaporation and passed to a denitration process where it is converted to uranium oxide. This oxide is re-used in the nuclear fuel cycle.
(b) The intensely radioactive fission products solution is normally concentrated by evaporation and stored as a liquor concentrate. This concentrate may be subsequently evaporated and converted to a form suitable for storage or disposal.
(c) The pure plutonium nitrate solution is concentrated and stored pending its transfer to further process steps. In particular, holding or storage vessels for plutonium solutions are designed to avoid criticality problems resulting from changes in concentration and form of this stream.
Especially designed or prepared holding or storage vessels for use in a plant for the reprocessing of irradiated fuel. The holding or storage vessels must be resistant to the corrosive effect of nitric acid. The holding or storage vessels are normally fabricated of materials such as low carbon stainless steels, titanium or zirconium, or other high quality materials. Holding or storage vessels may be designed for remote operation and maintenance and may have the following features for control of nuclear criticality:
(1) walls or internal structures with a boron equivalent of at least two per cent, or
(2) a maximum diameter of 175 mm (7 in) for cylindrical vessels, or
(3) a maximum width of 75 mm (3 in) for either a slab or annular vessel.
3.5. Plutonium nitrate to oxide conversion system
INTRODUCTORY NOTE
In most reprocessing facilities, this final process involves the conversion of the plutonium nitrate solution to plutonium dioxide. The main functions involved in this process are: process feed storage and adjustment, precipitation and solid/liquor separation, calcination, product handling, ventilation, waste management, and process control.
Complete systems especially designed or prepared for the conversion of plutonium nitrate to plutonium oxide, in particular adapted so as to avoid criticality and radiation effects and to minimize toxicity hazards.
3.6. Plutonium oxide to metal production system
INTRODUCTORY NOTE
This process, which could be related to a reprocessing facility, involves the fluorination of plutonium dioxide, normally with highly corrosive hydrogen fluoride, to produce plutonium fluoride which is subsequently reduced using high purity calcium metal to produce metallic plutonium and a calcium fluoride slag. The main functions involved in this process are: fluorination (e.g. involving equipment fabricated or lined with a precious metal), metal reduction (e.g. employing ceramic crucibles), slag recovery, product handling, ventilation, waste management and process control.
Complete systems especially designed or prepared for the production of plutonium metal, in particular adapted so as to avoid criticality and radiation effects and to minimize toxicity hazards.
4. Plants for the fabrication of fuel elements
A “plant for the fabrication of fuel elements” includes the equipment:
(a) Which normally comes in direct contact with, or directly processes, or controls, the production flow of nuclear material, or
(b) Which seals the nuclear material within the cladding.
5. Plants for the separation of isotopes of uranium and equipment, other than analytical instruments, especially designed or prepared therefor
Items of equipment that are considered to fall within the meaning of the phrase “equipment, other than analytical instruments, especially designed or prepared” for the separation of isotopes of uranium include:
5.1. Gas centrifuges and assemblies and components especially designed or prepared for use in gas centrifuges
INTRODUCTORY NOTE
The gas centrifuge normally consists of a thin-walled cylinder(s) of between 75 mm (3 in) and 400 mm (16 in) diameter contained in a vacuum environment and spun at high peripheral speed of the order of 300 m/s or more with its central axis vertical. In order to achieve high speed the materials of construction for the rotating components have to be of a high strength to density ratio and the rotor assembly, and hence its individual components, have to be manufactured to very close tolerances in order to minimize the unbalance. In contrast to other centrifuges, the gas centrifuge for uranium enrichment is characterized by having within the rotor chamber a rotating disc-shaped baffle(s) and a stationary tube arrangement for feeding and extracting the UF6 gas and featuring at least 3 separate channels, of which 2 are connected to scoops extending from the rotor axis towards the periphery of the rotor chamber. Also contained within the vacuum environment are a number of critical items which do not rotate and which although they are especially designed are not difficult to fabricate nor are they fabricated out of unique materials. A centrifuge facility however requires a large number of these components, so that quantities can provide an important indication of end use.
5.1.1. Rotating components
(a) Complete rotor assemblies:
Thin-walled cylinders, or a number of interconnected thin-walled cylinders, manufactured from one or more of the high strength to density ratio materials described in the EXPLANATORY NOTE to this Section. If interconnected, the cylinders are joined together by flexible bellows or rings as described in section 5.1.1.(c) following. The rotor is fitted with an internal baffle(s) and end caps, as described in section 5.1.1.(d) and (e) following, if in final form. However the complete assembly may be delivered only partly assembled.
(b) Rotor tubes:
Especially designed or prepared thin-walled cylinders with thickness of 12 mm (0.5 in) or less, a diameter of between 75 mm (3 in) and 400 mm (16 in), and manufactured from one or more of the high strength to density ratio materials described in the EXPLANATORY NOTE to this Section.
(c) Rings or Bellows:
Components especially designed or prepared to give localized support to the rotor tube or to join together a number of rotor tubes. The bellows is a short cylinder of wall thickness 3 mm (0.12 in) or less, a diameter of between 75 mm (3 in) and 400 mm (16 in), having a convolute, and manufactured from one of the high strength to density ratio materials described in the EXPLANATORY NOTE to this Section.
(d) Baffles:
Disc-shaped components of between 75 mm (3 in) and 400 mm (16 in) diameter especially designed or prepared to be mounted inside the centrifuge rotor tube, in order to isolate the take-off chamber from the main separation chamber and, in some cases, to assist the UF6 gas circulation within the main separation chamber of the rotor tube, and manufactured from one of the high strength to density ratio materials described in the EXPLANATORY NOTE to this Section.
(e) Top caps/Bottom caps:
Disc-shaped components of between 75 mm (3 in) and 400 mm (16 in) diameter especially designed or prepared to fit to the ends of the rotor tube, and so contain the UF6 within the rotor tube, and in some cases to support, retain or contain as an integrated part an element of the upper bearing (top cap) or to carry the rotating elements of the motor and lower bearing (bottom cap), and manufactured from one of the high strength to density ratio materials described in the EXPLANATORY NOTE to this Section.
EXPLANATORY NOTE
The materials used for centrifuge rotating components are:
(a) Maraging steel capable of an ultimate tensile strength of 2.05 x 109 N/m2 (300,000 psi) or more;
(b) Aluminium alloys capable of an ultimate tensile strength of 0.46 x 109 N/m2 (67,000 psi) or more;
(c) Filamentary materials suitable for use in composite structures and having a specific modulus of 12.3 x 106 m or greater and a specific ultimate tensile strength of 0.3 x 106 m or greater (‘Specific Modulus’ is the Young’s Modulus in N/m2 divided by the specific weight in N/m3; ‘Specific Ultimate Tensile Strength’ is the ultimate tensile strength in N/m2 divided by the specific weight in N/m3).
5.1.2. Static components
(a) Magnetic suspension bearings:
Especially designed or prepared bearing assemblies consisting of an annular magnet suspended within a housing containing a damping medium. The housing will be manufactured from a UF6-resistant material (see EXPLANATORY NOTE to Section 5.2.). The magnet couples with a pole piece or a second magnet fitted to the top cap described in Section 5.1.1.(e). The magnet may be ring-shaped with a relation between outer and inner diameter smaller or equal to 1.6:1. The magnet may be in a form having an initial permeability of 0.15 H/m (120,000 in CGS units) or more, or a remanence of 98.5% or more, or an energy product of greater than 80 kJ/m3 (107 gauss-oersteds). In addition to the usual material properties, it is a prerequisite that the deviation of the magnetic axes from the geometrical axes is limited to very small tolerances (lower than 0.1 mm or 0.004 in) or that homogeneity of the material of the magnet is specially called for.
(b) Bearings/Dampers:
Especially designed or prepared bearings comprising a pivot/cup assembly mounted on a damper. The pivot is normally a hardened steel shaft with a hemisphere at one end with a means of attachment to the bottom cap described in section 5.1.1.(e) at the other. The shaft may however have a hydrodynamic bearing attached. The cup is pellet-shaped with a hemispherical indentation in one surface. These components are often supplied separately to the damper.
(c) Molecular pumps:
Especially designed or prepared cylinders having internally machined or extruded helical grooves and internally machined bores. Typical dimensions are as follows: 75 mm (3 in) to 400 mm (16 in) internal diameter, 10 mm (0.4 in) or more wall thickness, with the length equal to or greater than the diameter. The grooves are typically rectangular in cross-section and 2 mm (0.08 in) or more in depth.
(d) Motor stators:
Especially designed or prepared ring-shaped stators for high speed multiphase AC hysteresis (or reluctance) motors for synchronous operation within a vacuum in the frequency range of 600 – 2000 Hz and a power range of 50 – 1000 VA. The stators consist of multi-phase windings on a laminated low loss iron core comprised of thin layers typically 2.0 mm (0.08 in) thick or less.
(e) Centrifuge housing/recipients:
Components especially designed or prepared to contain the rotor tube assembly of a gas centrifuge. The housing consists of a rigid cylinder of wall thickness up to 30 mm (1.2 in) with precision machined ends to locate the bearings and with one or more flanges for mounting. The machined ends are parallel to each other and perpendicular to the cylinder’s longitudinal axis to within 0.05 degrees or less. The housing may also be a honeycomb type structure to accommodate several rotor tubes. The housings are made of or protected by materials resistant to corrosion by UF6.
(f) Scoops:
Especially designed or prepared tubes of up to 12 mm (0.5 in) internal diameter for the extraction of UF6 gas from within the rotor tube by a Pitot tube action (that is, with an aperture facing into the circumferential gas flow within the rotor tube, for example by bending the end of a radially disposed tube) and capable of being fixed to the central gas extraction system. The tubes are made of or protected by materials resistant to corrosion by UF6.
5.2. Especially designed or prepared auxiliary systems, equipment and components for gas centrifuge enrichment plants
INTRODUCTORY NOTE
The auxiliary systems, equipment and components for a gas centrifuge enrichment plant are the systems of plant needed to feed UF6 to the centrifuges, to link the individual centrifuges to each other to form cascades (or stages) to allow for progressively higher enrichments and to extract the ‘product’ and ‘tails’ UF6 from the centrifuges, together with the equipment required to drive the centrifuges or to control the plant.
Normally UF6 is evaporated from the solid using heated autoclaves and is distributed in gaseous form to the centrifuges by way of cascade header pipework. The ‘product’ and ‘tails’ UF6 gaseous streams flowing from the centrifuges are also passed by way of cascade header pipework to cold traps (operating at about 203 K (-70 oC)) where they are condensed prior to onward transfer into suitable containers for transportation or storage. Because an enrichment plant consists of many thousands of centrifuges arranged in cascades there are many kilometers of cascade header pipework, incorporating thousands of welds with a substantial amount of repetition of layout. The equipment, components and piping systems are fabricated to very high vacuum and cleanliness standards.
5.2.1. Feed systems/product and tails withdrawal systems
Especially designed or prepared process systems including:
Feed autoclaves (or stations), used for passing UF6 to the centrifuge cascades at up to 100 kPa (15 psi) and at a rate of 1 kg/h or more;
Desublimers (or cold traps) used to remove UF6 from the cascades at up to 3 kPa (0.5 psi) pressure. The desublimers are capable of being chilled to 203 K (-70 oC) and heated to 343 K (70 oC);
‘Product’ and ‘Tails’ stations used for trapping UF6 into containers.
This plant, equipment and pipework is wholly made of or lined with UF6-resistant materials (see EXPLANATORY NOTE to this section) and is fabricated to very high vacuum and cleanliness standards.
5.2.2. Machine header piping systems
Especially designed or prepared piping systems and header systems for handling UF6 within the centrifuge cascades. The piping network is normally of the ‘triple’ header system with each centrifuge connected to each of the headers. There is thus a substantial amount of repetition in its form. It is wholly made of UF6-resistant materials (see EXPLANATORY NOTE to this section) and is fabricated to very high vacuum and cleanliness standards.
5.2.3. UF6 mass spectrometers/ion sources
Especially designed or prepared magnetic or quadrupole mass spectrometers capable of taking ‘on-line’ samples of feed, product or tails, from UF6 gas streams and having all of the following characteristics:
1. Unit resolution for atomic mass unit greater than 320;
2. Ion sources constructed of or lined with nichrome or monel or nickel plated;
3. Electron bombardment ionization sources;
4. Having a collector system suitable for isotopic analysis.
5.2.4. Frequency changers
Frequency changers (also known as converters or invertors) especially designed or prepared to supply motor stators as defined under 5.1.2.(d), or parts, components and sub-assemblies of such frequency changers having all of the following characteristics:
1. A multiphase output of 600 to 2000 Hz;
2. High stability (with frequency control better than 0.1%);
3. Low harmonic distortion (less than 2%); and
4. An efficiency of greater than 80%.
EXPLANATORY NOTE
The items listed above either come into direct contact with the UF6 process gas or directly control the centrifuges and the passage of the gas from centrifuge to centrifuge and cascade to cascade.
Materials resistant to corrosion by UF6 include stainless steel, aluminium, aluminium alloys, nickel or alloys containing 60% or more nickel.
5.3. Especially designed or prepared assemblies and components for use in gaseous diffusion enrichment
INTRODUCTORY NOTE
In the gaseous diffusion method of uranium isotope separation, the main technological assembly is a special porous gaseous diffusion barrier, heat exchanger for cooling the gas (which is heated by the process of compression), seal valves and control valves, and pipelines. Inasmuch as gaseous diffusion technology uses uranium hexafluoride (UF6), all equipment, pipeline and instrumentation surfaces (that come in contact with the gas) must be made of materials that remain stable in contact with UF6. A gaseous diffusion facility requires a number of these assemblies, so that quantities can provide an important indication of end use.
5.3.1. Gaseous diffusion barriers
(a) Especially designed or prepared thin, porous filters, with a pore size of 100 – 1,000 Ĺ (angstroms), a thickness of 5 mm (0.2 in) or less, and for tubular forms, a diameter of 25 mm (1 in) or less, made of metallic, polymer or ceramic materials resistant to corrosion by UF6, and
(b) especially prepared compounds or powders for the manufacture of such filters. Such compounds and powders include nickel or alloys containing 60 per cent or more nickel, aluminium oxide, or UF6-resistant fully fluorinated hydrocarbon polymers having a purity of 99.9 per cent or more, a particle size less than 10 microns, and a high degree of particle size uniformity, which are especially prepared for the manufacture of gaseous diffusion barriers.
5.3.2. Diffuser housings
Especially designed or prepared hermetically sealed cylindrical vessels greater than 300 mm (12 in) in diameter and greater than 900 mm (35 in) in length, or rectangular vessels of comparable dimensions, which have an inlet connection and two outlet connections all of which are greater than 50 mm (2 in) in diameter, for containing the gaseous diffusion barrier, made of or lined with UF6-resistant materials and designed for horizontal or vertical installation.
5.3.3. Compressors and gas blowers
Especially designed or prepared axial, centrifugal, or positive displacement compressors, or gas blowers with a suction volume capacity of 1 m3/min or more of UF6, and with a discharge pressure of up to several hundred kPa (100 psi), designed for long-term operation in the UF6 environment with or without an electrical motor of appropriate power, as well as separate assemblies of such compressors and gas blowers. These compressors and gas blowers have a pressure ratio between 2:1 and 6:1 and are made of, or lined with, materials resistant to UF6.
5.3.4. Rotary shaft seals
Especially designed or prepared vacuum seals, with seal feed and seal exhaust connections, for sealing the shaft connecting the compressor or the gas blower rotor with the driver motor so as to ensure a reliable seal against in-leaking of air into the inner chamber of the compressor or gas blower which is filled with UF6. Such seals are normally designed for a buffer gas in-leakage rate of less than 1000 cm3/min (60 in3/min).
5.3.5. Heat exchangers for cooling UF6
Especially designed or prepared heat exchangers made of or lined with UF6-resistant materials (except stainless steel) or with copper or any combination of those metals, and intended for a leakage pressure change rate of less than 10 Pa (0.0015 psi) per hour under a pressure difference of 100 kPa (15 psi).
5.4. Especially designed or prepared auxiliary systems, equipment and components for use in gaseous diffusion enrichment
INTRODUCTORY NOTE
The auxiliary systems, equipment and components for gaseous diffusion enrichment plants are the systems of plant needed to feed UF6 to the gaseous diffusion assembly, to link the individual assemblies to each other to form cascades (or stages) to allow for progressively higher enrichments and to extract the ‘product’ and ‘tails’ UF6 from the diffusion cascades. Because of the high inertial properties of diffusion cascades, any interruption in their operation, and especially their shut-down, leads to serious consequences. Therefore, a strict and constant maintenance of vacuum in all technological systems, automatic protection from accidents, and precise automated regulation of the gas flow is of importance in a gaseous diffusion plant. All this leads to a need to equip the plant with a large number of special measuring, regulating and controlling systems.
Normally UF6 is evaporated from cylinders placed within autoclaves and is distributed in gaseous form to the entry point by way of cascade header pipework. The ‘product’ and ‘tails’ UF6 gaseous streams flowing from exit points are passed by way of cascade header pipework to either cold traps or to compression stations where the UF6 gas is liquefied prior to onward transfer into suitable containers for transportation or storage. Because a gaseous diffusion enrichment plant consists of a large number of gaseous diffusion assemblies arranged in cascades, there are many kilometers of cascade header pipework, incorporating thousands of welds with substantial amounts of repetition of layout. The equipment, components and piping systems are fabricated to very high vacuum and cleanliness standards.
5.4.1. Feed systems/product and tails withdrawal systems
Especially designed or prepared process systems, capable of operating at pressures of 300 kPa (45 psi) or less, including:
Feed autoclaves (or systems), used for passing UF6 to the gaseous diffusion cascades;
Desublimers (or cold traps) used to remove UF6 from diffusion cascades;
Liquefaction stations where UF6 gas from the cascade is compressed and cooled to form liquid UF6;
‘Product’ or ‘tails’ stations used for transferring UF6 into containers.
5.4.2. Header piping systems
Especially designed or prepared piping systems and header systems for handling UF6 within the gaseous diffusion cascades. This piping network is normally of the “double” header system with each cell connected to each of the headers.
5.4.3. Vacuum systems
(a) Especially designed or prepared large vacuum manifolds, vacuum headers and vacuum pumps having a suction capacity of 5 m3/min (175 ft3/min) or more.
(b) Vacuum pumps especially designed for service in UF6-bearing atmospheres made of, or lined with, aluminium, nickel, or alloys bearing more than 60% nickel. These pumps may be either rotary or positive, may have displacement and fluorocarbon seals, and may have special working fluids present.
5.4.4. Special shut-off and control valves
Especially designed or prepared manual or automated shut-off and control bellows valves made of UF6-resistant materials with a diameter of 40 to 1500 mm (1.5 to 59 in) for installation in main and auxiliary systems of gaseous diffusion enrichment plants.
5.4.5. UF6 mass spectrometers/ion sources
Especially designed or prepared magnetic or quadrupole mass spectrometers capable of taking “on-line” samples of feed, product or tails, from UF6 gas streams and having all of the following characteristics:
1. Unit resolution for atomic mass unit greater than 320;
2. Ion sources constructed of or lined with nichrome or monel or nickel plated;
3. Electron bombardment ionization sources;
4. Collector system suitable for isotopic analysis.
EXPLANATORY NOTE
The items listed above either come into direct contact with the UF6 process gas or directly control the flow within the cascade. All surfaces which come into contact with the process gas are wholly made of, or lined with, UF6-resistant materials. For the purposes of the sections relating to gaseous diffusion items the materials resistant to corrosion by UF6 include stainless steel, aluminium, aluminium alloys, aluminium oxide, nickel or alloys containing 60% or more nickel and UF6-resistant fully fluorinated hydrocarbon polymers.
5.5. Especially designed or prepared systems, equipment and components for use in aerodynamic enrichment plants
INTRODUCTORY NOTE
In aerodynamic enrichment processes, a mixture of gaseous UF6 and light gas (hydrogen or helium) is compressed and then passed through separating elements wherein isotopic separation is accomplished by the generation of high centrifugal forces over a curved-wall geometry. Two processes of this type have been successfully developed: the separation nozzle process and the vortex tube process. For both processes the main components of a separation stage include cylindrical vessels housing the special separation elements (nozzles or vortex tubes), gas compressors and heat exchangers to remove the heat of compression. An aerodynamic plant requires a number of these stages, so that quantities can provide an important indication of end use. Since aerodynamic processes use UF6, all equipment, pipeline and instrumentation surfaces (that come in contact with the gas) must be made of materials that remain stable in contact with UF6.
EXPLANATORY NOTE
The items listed in this section either come into direct contact with the UF6 process gas or directly control the flow within the cascade. All surfaces which come into contact with the process gas are wholly made of or protected by UF6-resistant materials. For the purposes of the section relating to aerodynamic enrichment items, the materials resistant to corrosion by UF6 include copper, stainless steel, aluminium, aluminium alloys, nickel or alloys containing 60% or more nickel and UF6-resistant fully fluorinated hydrocarbon polymers.
5.5.1. Separation nozzles
Especially designed or prepared separation nozzles and assemblies thereof. The separation nozzles consist of slit-shaped, curved channels having a radius of curvature less than 1 mm (typically 0.1 to 0.05 mm), resistant to corrosion by UF6 and having a knife-edge within the nozzle that separates the gas flowing through the nozzle into two fractions.
5.5.2. Vortex tubes
Especially designed or prepared vortex tubes and assemblies thereof. The vortex tubes are cylindrical or tapered, made of or protected by materials resistant to corrosion by UF6, having a diameter of between 0.5 cm and 4 cm, a length to diameter ratio of 20:1 or less and with one or more tangential inlets. The tubes may be equipped with nozzle-type appendages at either or both ends.
EXPLANATORY NOTE
The feed gas enters the vortex tube tangentially at one end or through swirl vanes or at numerous tangential positions along the periphery of the tube.
5.5.3. Compressors and gas blowers
Especially designed or prepared axial, centrifugal or positive displacement compressors or gas blowers made of or protected by materials resistant to corrosion by UF6 and with a suction volume capacity of 2 m3/min or more of UF6/carrier gas (hydrogen or helium) mixture.
EXPLANATORY NOTE
These compressors and gas blowers typically have a pressure ratio between 1.2:1 and 6:1.
5.5.4. Rotary shaft seals
Especially designed or prepared rotary shaft seals, with seal feed and seal exhaust connections, for sealing the shaft connecting the compressor rotor or the gas blower rotor with the driver motor so as to ensure a reliable seal against out-leakage of process gas or in-leakage of air or seal gas into the inner chamber of the compressor or gas blower which is filled with a UF6/carrier gas mixture.
5.5.5. Heat exchangers for gas cooling
Especially designed or prepared heat exchangers made of or protected by materials resistant to corrosion by UF6.
5.5.6. Separation element housings
Especially designed or prepared separation element housings, made of or protected by materials resistant to corrosion by UF6, for containing vortex tubes or separation nozzles.
EXPLANATORY NOTE
These housings may be cylindrical vessels greater than 300 mm in diameter and greater than 900 mm in length, or may be rectangular vessels of comparable dimensions, and may be designed for horizontal or vertical installation.
5.5.7. Feed systems/product and tails withdrawal systems
Especially designed or prepared process systems or equipment for enrichment plants made of or protected by materials resistant to corrosion by UF6, including:
(a) Feed autoclaves, ovens, or systems used for passing UF6 to the enrichment process;
(b) Desublimers (or cold traps) used to remove UF6 from the enrichment process for subsequent transfer upon heating;
(c) Solidification or liquefaction stations used to remove UF6 from the enrichment process by compressing and converting UF6 to a liquid or solid form;
(d) ‘Product’ or ‘tails’ stations used for transferring UF6 into containers.
5.5.8. Header piping systems
Especially designed or prepared header piping systems, made of or protected by materials resistant to corrosion by UF6, for handling UF6 within the aerodynamic cascades. This piping network is normally of the ‘double’ header design with each stage or group of stages connected to each of the headers.
5.5.9. Vacuum systems and pumps
(a) Especially designed or prepared vacuum systems having a suction capacity of 5 m3/min or more, consisting of vacuum manifolds, vacuum headers and vacuum pumps, and designed for service in UF6-bearing atmospheres,
(b) Vacuum pumps especially designed or prepared for service in UF6-bearing atmospheres and made of or protected by materials resistant to corrosion by UF6. These pumps may use fluorocarbon seals and special working fluids.
5.5.10. Special shut-off and control valves
Especially designed or prepared manual or automated shut-off and control bellows valves made of or protected by materials resistant to corrosion by UF6 with a diameter of 40 to 1500 mm for installation in main and auxiliary systems of aerodynamic enrichment plants.
5.5.11. UF6 mass spectrometers/ion sources
Especially designed or prepared magnetic or quadrupole mass spectrometers capable of taking ‘on-line’ samples of feed, ‘product’ or ‘tails’, from UF6 gas streams and having all of the following characteristics:
1. Unit resolution for mass greater than 320;
2. Ion sources constructed of or lined with nichrome or monel or nickel plated;
3. Electron bombardment ionization sources;
4. Collector system suitable for isotopic analysis.
5.5.12. UF6/carrier gas separation systems
Especially designed or prepared process systems for separating UF6 from carrier gas (hydrogen or helium).
EXPLANATORY NOTE
These systems are designed to reduce the UF6 content in the carrier gas to 1 ppm or less and may incorporate equipment such as:
(a) Cryogenic heat exchangers and cryoseparators capable of temperatures of –120 oC or less, or
(b) Cryogenic refrigeration units capable of temperatures of –120 oC or less, or
(c) Separation nozzle or vortex tube units for the separation of UF6 from carrier gas, or
(d) UF6 cold traps capable of temperatures of –20 oC or less.
5.6. Especially designed or prepared systems, equipment and components for use in chemical exchange or ion exchange enrichment plants
INTRODUCTORY NOTE
The slight difference in mass between the isotopes of uranium causes small changes in chemical reaction equilibria that can be used as a basis for separation of the isotopes. Two processes have been successfully developed: liquid-liquid chemical exchange and solid-liquid ion exchange.
In the liquid-liquid chemical exchange process, immiscible liquid phases (aqueous and organic) are countercurrently contacted to give the cascading effect of thousands of separation stages. The aqueous phase consists of uranium chloride in hydrochloric acid solution; the organic phase consists of an extractant containing uranium chloride in an organic solvent. The contactors employed in the separation cascade can be liquid-liquid exchange columns (such as pulsed columns with sieve plates) or liquid centrifugal contactors. Chemical conversions (oxidation and reduction) are required at both ends of the separation cascade in order to provide for the reflux requirements at each end. A major design concern is to avoid contamination of the process streams with certain metal ions. Plastic, plastic-lined (including use of fluorocarbon polymers) and/or glass-lined columns and piping are therefore used.
In the solid-liquid ion-exchange process, enrichment is accomplished by uranium adsorption/desorption on a special, very fast-acting, ion-exchange resin or adsorbent. A solution of uranium in hydrochloric acid and other chemical agents is passed through cylindrical enrichment columns containing packed beds of the adsorbent. For a continuous process, a reflux system is necessary to release the uranium from the adsorbent back into the liquid flow so that ‘product’ and ‘tails’ can be collected. This is accomplished with the use of suitable reduction/oxidation chemical agents that are fully regenerated in separate external circuits and that may be partially regenerated within the isotopic separation columns themselves. The presence of hot concentrated hydrochloric acid solutions in the process requires that the equipment be made of or protected by special corrosion-resistant materials.
5.6.1. Liquid-liquid exchange columns (Chemical exchange)
Countercurrent liquid-liquid exchange columns having mechanical power input (i.e., pulsed columns with sieve plates, reciprocating plate columns, and columns with internal turbine mixers), especially designed or prepared for uranium enrichment using the chemical exchange process. For corrosion resistance to concentrated hydrochloric acid solutions, these columns and their internals are made of or protected by suitable plastic materials (such as fluorocarbon polymers) or glass. The stage residence time of the columns is designed to be short (30 seconds or less).
5.6.2. Liquid-liquid centrifugal contactors (Chemical exchange)
Liquid-liquid centrifugal contactors especially designed or prepared for uranium enrichment using the chemical exchange process. Such contactors use rotation to achieve dispersion of the organic and aqueous streams and then centrifugal force to separate the phases. For corrosion resistance to concentrated hydrochloric acid solutions, the contactors are made of or are lined with suitable plastic materials (such as fluorocarbon polymers) or are lined with glass. The stage residence time of the centrifugal contactors is designed to be short (30 seconds or less).
5.6.3. Uranium reduction systems and equipment (Chemical exchange)
(a) Especially designed or prepared electrochemical reduction cells to reduce uranium from one valence state to another for uranium enrichment using the chemical exchange process. The cell materials in contact with process solutions must be corrosion resistant to concentrated hydrochloric acid solutions.
EXPLANATORY NOTE
The cell cathodic compartment must be designed to prevent re-oxidation of uranium to its higher valence state. To keep the uranium in the cathodic compartment, the cell may have an impervious diaphragm membrane constructed of special cation exchange material. The cathode consists of a suitable solid conductor such as graphite.
(b) Especially designed or prepared systems at the product end of the cascade for taking the U4+ out of the organic stream, adjusting the acid concentration and feeding to the electrochemical reduction cells.
EXPLANATORY NOTE
These systems consist of solvent extraction equipment for stripping the U4+ from the organic stream into an aqueous solution, evaporation and/or other equipment to accomplish solution pH adjustment and control, and pumps or other transfer devices for feeding to the electrochemical reduction cells. A major design concern is to avoid contamination of the aqueous stream with certain metal ions. Consequently, for those parts in contact with the process stream, the system is constructed of equipment made of or protected by suitable materials (such as glass, fluorocarbon polymers, polyphenyl sulfate, polyether sulfone, and resin-impregnated graphite).
5.6.4. Feed preparation systems (Chemical exchange)
Especially designed or prepared systems for producing high-purity uranium chloride feed solutions for chemical exchange uranium isotope separation plants.
EXPLANATORY NOTE
These systems consist of dissolution, solvent extraction and/or ion exchange equipment for purification and electrolytic cells for reducing the uranium U6+ or U4+ to U3+. These systems produce uranium chloride solutions having only a few parts per million of metallic impurities such as chromium, iron, vanadium, molybdenum and other bivalent or higher multi-valent cations. Materials of construction for portions of the system processing high-purity U3+ include glass, fluorocarbon polymers, polyphenyl sulfate or polyether sulfone plastic-lined and resin-impregnated graphite.
5.6.5. Uranium oxidation systems (Chemical exchange)
Especially designed or prepared systems for oxidation of U3+ to U4+ for return to the uranium isotope separation cascade in the chemical exchange enrichment process.
EXPLANATORY NOTE
These systems may incorporate equipment such as:
(a) Equipment for contacting chlorine and oxygen with the aqueous effluent from the isotope separation equipment and extracting the resultant U4+ into the stripped organic stream returning from the product end of the cascade,
(b) Equipment that separates water from hydrochloric acid so that the water and the concentrated hydrochloric acid may be reintroduced to the process at the proper locations.
5.6.6. Fast-reacting ion exchange resins/adsorbents (ion exchange)
Fast-reacting ion-exchange resins or adsorbents especially designed or prepared for uranium enrichment using the ion exchange process, including porous macroreticular resins, and/or pellicular structures in which the active chemical exchange groups are limited to a coating on the surface of an inactive porous support structure, and other composite structures in any suitable form including particles or fibers. These ion exchange resins/adsorbents have diameters of 0.2 mm or less and must be chemically resistant to concentrated hydrochloric acid solutions as well as physically strong enough so as not to degrade in the exchange columns. The resins/adsorbents are especially designed to achieve very fast uranium isotope exchange kinetics (exchange rate half-time of less than 10 seconds) and are capable of operating at a temperature in the range of 100 oC to 200 oC.
5.6.7. Ion exchange columns (Ion exchange)
Cylindrical columns greater than 1000 mm in diameter for containing and supporting packed beds of ion exchange resin/adsorbent, especially designed or prepared for uranium enrichment using the ion exchange process. These columns are made of or protected by materials (such as titanium or fluorocarbon plastics) resistant to corrosion by concentrated hydrochloric acid solutions and are capable of operating at a temperature in the range of 100 oC to 200 oC and pressures above 0.7 MPa (102 psia).
5.6.8. Ion exchange reflux systems (Ion exchange)
(a) Especially designed or prepared chemical or electrochemical reduction systems for regeneration of the chemical reducing agent(s) used in ion exchange uranium enrichment cascades.
(b) Especially designed or prepared chemical or electrochemical oxidation systems for regeneration of the chemical oxidizing agent(s) used in ion exchange uranium enrichment cascades.
EXPLANATORY NOTE
The ion exchange enrichment process may use, for example, trivalent titanium (Ti3+) as a reducing cation in which case the reduction system would regenerate Ti3+ by reducing Ti4+.
The process may use, for example, trivalent iron (Fe3+) as an oxidant in which case the oxidation system would regenerate Fe3+ by oxidizing Fe2+.
5.7. Especially designed or prepared systems, equipment and components for use in laser-based enrichment plants
INTRODUCTORY NOTE
Present systems for enrichment processes using lasers fall into two categories: those in which the process medium is atomic uranium vapor and those in which the process medium is the vapor of a uranium compound. Common nomenclature for such processes include: first category – atomic vapor laser isotope separation (AVLIS or SILVA); second category – molecular laser isotope separation (MLIS or MOLIS) and chemical reaction by isotope selective laser activation (CRISLA). The systems, equipment and components for laser enrichment plants embrace: (a) devices to feed uranium-metal vapor (for selective photo-ionization) or devices to feed the vapor of a uranium compound (for photo-dissociation or chemical activation); (b) devices to collect enriched and depleted uranium metal as ‘product’ and ‘tails’ in the first category, and devices to collect dissociated or reacted compounds as ‘product’ and unaffected material as ‘tails’ in the second category; (c) process laser systems to selectively excite the uranium-235 species; and (d) feed preparation and product conversion equipment. The complexity of the spectroscopy of uranium atoms and compounds may require incorporation of any of a number of available laser technologies.
EXPLANATORY NOTE
Many of the items listed in this section come into direct contact with uranium metal vapor or liquid or with process gas consisting of UF6 or a mixture of UF6 and other gases. All surfaces that come into contact with the uranium or UF6 are wholly made of or protected by corrosion-resistant materials. For the purposes of the section relating to laser-based enrichment items, the materials resistant to corrosion by the vapor or liquid of uranium metal or uranium alloys include yttria-coated graphite and tantalum; and the materials resistant to corrosion by UF6 include copper, stainless steel, aluminium, aluminium alloys, nickel or alloys containing 60 % or more nickel and UF6-resistant fully fluorinated hydrocarbon polymers.
5.7.1. Uranium vaporization systems (AVLIS)
Especially designed or prepared uranium vaporization systems which contain high-power strip or scanning electron beam guns with a delivered power on the target of more than 2.5 kW/cm.
5.7.2. Liquid uranium metal handling systems (AVLIS)
Especially designed or prepared liquid metal handling systems for molten uranium or uranium alloys, consisting of crucibles and cooling equipment for the crucibles.
EXPLANATORY NOTE
The crucibles and other parts of this system that come into contact with molten uranium or uranium alloys are made of or protected by materials of suitable corrosion and heat resistance. Suitable materials include tantalum, yttria-coated graphite, graphite coated with other rare earth oxides or mixtures thereof.
5.7.3. Uranium metal ‘product’ and ‘tails’ collector assemblies (AVLIS)
Especially designed or prepared ‘product’ and ‘tails’ collector assemblies for uranium metal in liquid or solid form.
EXPLANATORY NOTE
Components for these assemblies are made of or protected by materials resistant to the heat and corrosion of uranium metal vapor or liquid (such as yttria-coated graphite or tantalum) and may include pipes, valves, fittings, ‘gutters’, feed-throughs, heat exchangers and collector plates for magnetic, electrostatic or other separation methods.
5.7.4. Separator module housings (AVLIS)
Especially designed or prepared cylindrical or rectangular vessels for containing the uranium metal vapor source, the electron beam gun, and the ‘product’ and ‘tails’ collectors.
EXPLANATORY NOTE
These housings have multiplicity of ports for electrical and water feed-throughs, laser beam windows, vacuum pump connections and instrumentation diagnostics and monitoring. They have provisions for opening and closure to allow refurbishment of internal components.
5.7.5. Supersonic expansion nozzles (MLIS)
Especially designed or prepared supersonic expansion nozzles for cooling mixtures of UF6 and carrier gas to 150 K or less and which are corrosion resistant to UF6.
5.7.6. Uranium pentafluoride product collectors (MLIS)
Especially designed or prepared uranium pentafluoride (UF5) solid product collectors consisting of filter, impact, or cyclone-type collectors, or combinations thereof, and which are corrosion resistant to the UF5/UF6 environment.
5.7.7. UF6/carrier gas compressors (MLIS)
Especially designed or prepared compressors for UF6/carrier gas mixtures, designed for long term operation in a UF6 environment. The components of these compressors that come into contact with process gas are made of or protected by materials resistant to corrosion by UF6.
5.7.8. Rotary shaft seals (MLIS)
Especially designed or prepared rotary shaft seals, with seal feed and seal exhaust connections, for sealing the shaft connecting the compressor rotor with the driver motor so as to ensure a reliable seal against out-leakage of process gas or in-leakage of air or seal gas into the inner chamber of the compressor which is filled with a UF6/carrier gas mixture.
5.7.9. Fluorination systems (MLIS)
Especially designed or prepared systems for fluorinating UF5 (solid) to UF6 (gas).
EXPLANATORY NOTE
These systems are designed to fluorinate the collected UF5 powder to UF6 for subsequent collection in product containers or for transfer as feed to MLIS units for additional enrichment. In one approach, the fluorination reaction may be accomplished within the isotope separation system to react and recover directly off the ‘product’ collectors. In another approach, the UF5 powder may be removed/transferred from the ‘product’ collectors into a suitable reaction vessel (e.g., fluidized-bed reactor, screw reactor or flame tower) for fluorination. In both approaches, equipment for storage and transfer of fluorine (or other suitable fluorinating agents) and for collection and transfer of UF6 are used.
5.7.10. UF6 mass spectrometers/ion sources (MLIS)
Especially designed or prepared magnetic or quadrupole mass spectrometers capable of taking ‘on-line’ samples of feed, ‘product’ or ‘tails’, from UF6 gas streams and having all of the following characteristics:
1. Unit resolution for mass greater than 320;
2. Ion sources constructed of or lined with nichrome or monel or nickel plated;
3. Electron bombardment ionization sources;
4. Collector system suitable for isotopic analysis.
5.7.11. Feed systems/product and tails withdrawal systems (MLIS)
Especially designed or prepared process systems or equipment for enrichment plants made of or protected by materials resistant to corrosion by UF6, including:
(a) Feed autoclaves, ovens, or systems used for passing UF6 to the enrichment process
(b) Desublimers (or cold traps) used to remove UF6 from the enrichment process for subsequent transfer upon heating;
(c) Solidification or liquefaction stations used to remove UF6 from the enrichment process by compressing and converting UF6 to a liquid or solid form;
(d) ‘Product’ or ‘tails’ stations used for transferring UF6 into containers.
5.7.12. UF6/carrier gas separation systems (MLIS)
Especially designed or prepared process systems for separating UF6 from carrier gas. The carrier gas may be nitrogen, argon, or other gas.
EXPLANATORY NOTE
These systems may incorporate equipment such as:
(a) Cryogenic heat exchangers or cryoseparators capable of temperatures of –120 oC or less, or
(b) Cryogenic refrigeration units capable of temperatures of –120 oC or less, or
(c) UF6 cold traps capable of temperatures of –20 oC or less.
5.7.13. Laser systems (AVLIS, MLIS and CRISLA)
Lasers or laser systems especially designed or prepared for the separation of uranium isotopes.
EXPLANATORY NOTE
The laser system for the AVLIS process usually consists of two lasers: a copper vapor laser and a dye laser. The laser system for MLIS usually consists of a CO2 or excimer laser and a multi-pass optical cell with revolving mirrors at both ends. Lasers or laser systems for both processes require a spectrum frequency stabilizer for operation over extended periods of time.
5.8. Especially designed or prepared systems, equipment and components for use in plasma separation enrichment plants
INTRODUCTORY NOTE
In the plasma separation process, a plasma of uranium ions passes through an electric field tuned to the U-235 ion resonance frequency so that they preferentially absorb energy and increase the diameter of their corkscrew-like orbits. Ions with a large-diameter path are trapped to produce a product enriched in U-235. The plasma, which is made by ionizing uranium vapor, is contained in a vacuum chamber with a high-strength magnetic field produced by a superconducting magnet. The main technological systems of the process include the uranium plasma generation system, the separator module with superconducting magnet and metal removal systems for the collection of ‘product’ and ‘tails’.
5.8.1. Microwave power sources and antennae
Especially designed or prepared microwave power sources and antennae for producing or accelerating ions and having the following characteristics: greater than 30 GHz frequency and greater than 50 kW mean power output for ion production.
5.8.2. Ion excitation coils
Especially designed or prepared radio frequency ion excitation coils for frequencies of more than 100 kHz and capable of handling more than 40 kW mean power.
5.8.3. Uranium plasma generation systems
Especially designed or prepared systems for the generation of uranium plasma, which may contain high-power strip or scanning electron beam guns with a delivered power on the target of more than 2.5 kW/cm.
5.8.4. Liquid uranium metal handling systems
Especially designed or prepared liquid metal handling systems for molten uranium or uranium alloys, consisting of crucibles and cooling equipment for the crucibles.
EXPLANATORY NOTE
The crucibles and other parts of this system that come into contact with molten uranium or uranium alloys are made of or protected by materials of suitable corrosion and heat resistance. Suitable materials include tantalum, yttria-coated graphite, graphite coated with other rare earth oxides or mixtures thereof.
5.8.5. Uranium metal ‘product’ and ‘tails’ collector assemblies
Especially designed or prepared ‘product’ and ‘tails’ collector assemblies for uranium metal in solid form. These collector assemblies are made of or protected by materials resistant to the heat and corrosion of uranium metal vapor, such as yttria-coated graphite or tantalum.
5.8.6. Separator module housings
Cylindrical vessels especially designed or prepared for use in plasma separation enrichment plants for containing the uranium plasma source, radio-frequency drive coil and the ‘product’ and ‘tails’ collectors.
EXPLANATORY NOTE
These housings have a multiplicity of ports for electrical feed-throughs, diffusion pump connections and instrumentation diagnostics and monitoring. They have provisions for opening and closure to allow for refurbishment of internal components and are constructed of a suitable non-magnetic material such as stainless steel.
5.9. Especially designed or prepared systems, equipment and components for use in electromagnetic enrichment plants
INTRODUCTORY NOTE
In the electromagnetic process, uranium metal ions produced by ionization of a salt feed material (typically UCl4) are accelerated and passed through a magnetic field that has the effect of causing the ions of different isotopes to follow different paths. The major components of an electromagnetic isotope separator include: a magnetic field for ion-beam diversion/separation of the isotopes, an ion source with its acceleration system, and a collection system for the separated ions. Auxiliary systems for the process include the magnet power supply system, the ion source high-voltage power supply system, the vacuum system, and extensive chemical handling systems for recovery of product and cleaning/recycling of components.
5.9.1. Electromagnetic isotope separators
Electromagnetic isotope separators especially designed or prepared for the separation of uranium isotopes, and equipment and components therefor, including:
(a) Ion sources
Especially designed or prepared single or multiple uranium ion sources consisting of a vapor source, ionizer, and beam accelerator, constructed of suitable materials such as graphite, stainless steel, or copper, and capable of providing a total ion beam current of 50 mA or greater.
(b) Ion collectors
Collector plates consisting of two or more slits and pockets especially designed or prepared for collection of enriched and depleted uranium ion beams and constructed of suitable materials such as graphite or stainless steel.
(c) Vacuum housings
Especially designed or prepared vacuum housings for uranium electromagnetic separators, constructed of suitable non-magnetic materials such as stainless steel and designed for operation at pressures of 0.1 Pa or lower.
EXPLANATORY NOTE
The housings are specially designed to contain the ion sources, collector plates and water-cooled liners and have provision for diffusion pump connections and opening and closure for removal and reinstallation of these components.
(d) Magnet pole pieces
Especially designed or prepared magnet pole pieces having a diameter greater than 2 m used to maintain a constant magnetic field within an electromagnetic isotope separator and to transfer the magnetic field between adjoining separators.
5.9.2. High voltage power supplies
Especially designed or prepared high-voltage power supplies for ion sources, having all of the following characteristics: capable of continuous operation, output voltage of 20,000 V or greater, output current of 1 A or greater, and voltage regulation of better than 0.01% over a time period of 8 hours.
5.9.3. Magnet power supplies
Especially designed or prepared high-power, direct current magnet power supplies having all of the following characteristics: capable of continuously producing a current output of 500 A or greater at a voltage of 100 V or greater and with a current or voltage regulation better than 0.01% over a period of 8 hours.
6. Plants for the production of heavy water, deuterium and deuterium compounds and equipment especially designed or prepared therefor
INTRODUCTORY NOTE
Heavy water can be produced by a variety of processes. However, the two processes that have proven to be commercially viable are the water-hydrogen sulphide exchange process (GS process) and the ammonia-hydrogen exchange process.
The GS process is based upon the exchange of hydrogen and deuterium between water and hydrogen sulphide within a series of towers which are operated with the top section cold and the bottom section hot. Water flows down the towers while the hydrogen sulphide gas circulates from the bottom to the top of the towers. A series of perforated trays are used to promote mixing between the gas and the water. Deuterium migrates to the water at low temperatures and to the hydrogen sulphide at high temperatures. Gas or water, enriched in deuterium, is removed from the first stage towers at the junction of the hot and cold sections and the process is repeated in subsequent stage towers. The product of the last stage, water enriched up to 30% in deuterium, is sent to a distillation unit to produce reactor grade heavy water, i.e., 99.75% deuterium oxide.
The ammonia-hydrogen exchange process can extract deuterium from synthesis gas through contact with liquid ammonia in the presence of a catalyst. The synthesis gas is fed into exchange towers and to an ammonia converter. Inside the towers the gas flows from the bottom to the top while the liquid ammonia flows from the top to the bottom. The deuterium is stripped from the hydrogen in the synthesis gas and concentrated in the ammonia. The ammonia then flows into an ammonia cracker at the bottom of the tower while the gas flows into an ammonia converter at the top. Further enrichment takes place in subsequent stages and reactor grade heavy water is produced through final distillation. The synthesis gas feed can be provided by an ammonia plant that, in turn, can be constructed in association with a heavy water ammonia-hydrogen exchange plant. The ammonia-hydrogen exchange process can also use ordinary water as a feed source of deuterium.
Many of the key equipment items for heavy water production plants using GS or the ammonia-hydrogen exchange processes are common to several segments of the chemical and petroleum industries. This is particularly so for small plants using the GS process. However, few of the items are available “off-the-shelf”. The GS and ammonia-hydrogen processes require the handling of large quantities of flammable, corrosive and toxic fluids at elevated pressures. Accordingly, in establishing the design and operating standards for plants and equipment using these processes, careful attention to the materials selection and specifications is required to ensure long service life with high safety and reliability factors. The choice of scale is primarily a function of economics and need. Thus, most of the equipment items would be prepared according to the requirements of the customer.
Finally, it should be noted that, in both the GS and the ammonia-hydrogen exchange processes, items of equipment which individually are not especially designed or prepared for heavy water production can be assembled into systems which are especially designed or prepared for producing heavy water. The catalyst production system used in the ammonia-hydrogen exchange process and water distillation systems used for the final concentration of heavy water to reactor-grade in either process are examples of such systems.
The items of equipment which are especially designed or prepared for the production of heavy water utilizing either the water-hydrogen sulphide exchange process or the ammonia-hydrogen exchange process include the following:
6.1. Water – Hydrogen Sulphide Exchange Towers
Exchange towers fabricated from fine carbon steel (such as ASTM A516) with diameters of 6 m (20 ft) to 9 m (30 ft), capable of operating at pressures greater than or equal to 2 MPa (300 psi) and with a corrosion allowance of 6 mm or greater, especially designed or prepared for heavy water production utilizing the water-hydrogen sulphide exchange process.
6.2. Blowers and Compressors
Single stage, low head (i.e., 0.2 MPa or 30 psi) centrifugal blowers or compressors for hydrogen-sulphide gas circulation (i.e., gas containing more than 70% H2S) especially designed or prepared for heavy water production utilizing the water-hydrogen sulphide exchange process. These blowers or compressors have a throughput capacity greater than or equal to 56 m3/second (120,000 SCFM) while operating at pressures greater than or equal to 1.8 MPa (260 psi) suction and have seals designed for wet H2S service.
6.3. Ammonia-Hydrogen Exchange Towers
Ammonia-hydrogen exchange towers greater than or equal to 35 m (114.3 ft) in height with diameters of 1.5 m (4.9 ft) to 2.5 m (8.2 ft) capable of operating at pressures greater than 15 MPa (2225 psi) especially designed or prepared for heavy water production utilizing the ammonia-hydrogen exchange process. These towers also have at least one flanged axial opening of the same diameter as the cylindrical part through which the tower internals can be inserted or withdrawn.
6.4. Tower Internals and Stage Pumps
Tower internals and stage pumps especially designed or prepared for towers for heavy water production utilizing the ammonia-hydrogen exchange process. Tower internals include especially designed stage contactors which promote intimate gas/liquid contact. Stage pumps include especially designed submersible pumps for circulation of liquid ammonia within a contacting stage internal to the stage towers.
6.5. Ammonia Crackers
Ammonia crackers with operating pressures greater than or equal to 3 MPa (450 psi) especially designed or prepared for heavy water production utilizing the ammonia- hydrogen exchange process.
6.6. Infrared Absorption Analyzers
Infrared absorption analyzers capable of “on-line” hydrogen/deuterium ratio analysis where deuterium concentrations are equal to or greater than 90%.
6.7. Catalytic Burners
Catalytic burners for the conversion of enriched deuterium gas into heavy water especially designed or prepared for heavy water production utilizing the ammonia-hydrogen exchange process.
7. Plants for the conversion of uranium and equipment especially designed or prepared therefor
INTRODUCTORY NOTE
Uranium conversion plants and systems may perform one or more transformations from one uranium chemical species to another, including: conversion of uranium ore concentrates to UO3, conversion of UO3 to UO2, conversion of uranium oxides to UF4 or UF6, conversion of UF4 to UF6, conversion of UF6 to UF4, conversion of UF4 to uranium metal, and conversion of uranium fluorides to UO2. Many of the key equipment items for uranium conversion plants are common to several segments of the chemical process industry. For example, the types of equipment employed in these processes may include: furnaces, rotary kilns, fluidized bed reactors, flame tower reactors, liquid centrifuges, distillation columns and liquid-liquid extraction columns. However, few of the items are available “off-the-shelf”; most would be prepared according to the requirements and specifications of the customer. In some instances, special design and construction considerations are required to address the corrosive properties of some of the chemicals handled (HF, F2, ClF3, and uranium fluorides). Finally, it should be noted that, in all of the uranium conversion processes, items of equipment which individually are not especially designed or prepared for uranium conversion can be assembled into systems which are especially designed or prepared for use in uranium conversion.
7.1. Especially designed or prepared systems for the conversion of uranium ore concentrates to UO3
EXPLANATORY NOTE
Conversion of uranium ore concentrates to UO3 can be performed by first dissolving the ore in nitric acid and extracting purified uranyl nitrate using a solvent such as tributyl phosphate. Next, the uranyl nitrate is converted to UO3 either by concentration and denitration or by neutralization with gaseous ammonia to produce ammonium diuranate with subsequent filtering, drying, and calcining.
7.2. Especially designed or prepared systems for the conversion of UO3 to UF6
EXPLANATORY NOTE
Conversion of UO3 to UF6 can be performed directly by fluorination. The process requires a source of fluorine gas or chlorine trifluoride.
7.3. Especially designed or prepared systems for the conversion of UO3 to UO2
EXPLANATORY NOTE
Conversion of UO3 to UO2 can be performed through reduction of UO3 with cracked ammonia gas or hydrogen.
7.4. Especially designed or prepared systems for the conversion of UO2 to UF4
EXPLANATORY NOTE
Conversion of UO2 to UF4 can be performed by reacting UO2 with hydrogen fluoride gas (HF) at 300-500 oC.
7.5. Especially designed or prepared systems for the conversion of UF4 to UF6
EXPLANATORY NOTE
Conversion of UF4 to UF6 is performed by exothermic reaction with fluorine in a tower reactor. UF6 is condensed from the hot effluent gases by passing the effluent stream through a cold trap cooled to -10 oC. The process requires a source of fluorine gas.
7.6. Especially designed or prepared systems for the conversion of UF4 to U metal
EXPLANATORY NOTE
Conversion of UF4 to U metal is performed by reduction with magnesium (large batches) or calcium (small batches). The reaction is carried out at temperatures above the melting point of uranium (1130 oC).
7.7. Especially designed or prepared systems for the conversion of UF6 to UO2
EXPLANATORY NOTE
Conversion of UF6 to UO2 can be performed by one of three processes. In the first, UF6 is reduced and hydrolyzed to UO2 using hydrogen and steam. In the second, UF6 is hydrolyzed by solution in water, ammonia is added to precipitate ammonium diuranate, and the diuranate is reduced to UO2 with hydrogen at 820 oC. In the third process, gaseous UF6, CO2, and NH3 are combined in water, precipitating ammonium uranyl carbonate. The ammonium uranyl carbonate is combined with steam and hydrogen at 500-600 oC to yield UO2.
UF6 to UO2 conversion is often performed as the first stage of a fuel fabrication plant.
7.8. Especially designed or prepared systems for the conversion of UF6 to UF4
EXPLANATORY NOTE
Conversion of UF6 to UF4 is performed by reduction with hydrogen.
DODATNI PROTOKOL K SPORAZUMU MED REPUBLIKO SLOVENIJO IN MEDNARODNO AGENCIJO ZA ATOMSKO ENERGIJO O VAROVANJU V ZVEZI S POGODBO O NEŠIRJENJU JEDRSKEGA OROŽJA
KER sta Republika Slovenija (v nadaljnjem besedilu Slovenija) in Mednarodna agencija za atomsko energijo (v nadaljnjem besedilu Agencija) podpisnici Sporazuma o varovanju v zvezi s pogodbo o neširjenju jedrskega orožja (Sporazum o varovanju), ki je začel veljati dne 1. avgusta 1997,
KER SE ZAVEDATA želje mednarodne skupnosti, da bi še bolj okrepila boj proti širjenju jedrskega orožja s povečanjem učinkovitosti in z izboljšanjem zmožnosti sistema varovanja Agencije,
KER POUDARJATA, da mora Agencija pri varovanju upoštevati potrebo, da se izogne oviranju gospodarskega in tehnološkega razvoja Slovenije ali mednarodnega sodelovanja na področju miroljubnih jedrskih dejavnosti, spoštuje zdravje, varnost, fizično zaščito in druge veljavne varnostne določbe ter pravice posameznikov in sprejme vse varnostne ukrepe za varstvo poslovnih, tehnoloških ter industrijskih skrivnosti kot tudi drugih zaupnih informacij, ki jih izve,
KER je treba pogostnost in intenzivnost v tem protokolu opisanih dejavnosti omejiti na najmanjšo možno mero v skladu s ciljem povečanja učinkovitosti in izboljšanja zmožnosti varovanja Agencije,
STA SE ZARADI TEGA Slovenija in Agencija sporazumeli o naslednjem:
ODNOS MED PROTOKOLOM IN SPORAZUMOM O VAROVANJU
1. člen
Določbe Sporazuma o varovanju veljajo za ta protokol v tolikšni meri, kolikor se nanašajo na določbe tega protokola in so združljive z njimi. Ob neskladju med določbami Sporazuma o varovanju in določbami tega protokola veljajo določbe tega protokola.
POSREDOVANJE INFORMACIJ
2. člen
a. Slovenija predloži Agenciji izjavo, ki vsebuje:
(i) splošen opis in informacije, ki določajo lokacijo raziskovalnih in razvojnih dejavnosti, povezanih z jedrskim gorivnim ciklom, ki ne vključujejo jedrskega materiala in se izvajajo kjer koli, kjer jih financira, posebej odobri ali nadzoruje Slovenija oziroma se izvajajo v njenem imenu;
(ii) informacije, ki jih je Agencija ugotovila na podlagi pričakovanega povečanja učinkovitosti ali zmožnosti in s katerimi se je Slovenija strinjala, o operativnih dejavnostih, pomembnih za varovanje v objektih in na lokacijah zunaj jedrskih objektov, kjer se jedrski material navadno uporablja;
(iii) splošen opis vsake stavbe na vsakem mestu, vključno z njeno uporabo in njeno vsebino, če to ni jasno iz tega opisa. Opis mora vključevati karto mesta;
(iv) opis obsega postopkov za vsako lokacijo, na kateri potekajo dejavnosti, določene v Prilogi I tega protokola;
(v) informacije, ki podrobno opredeljujejo lokacijo, obratovalno stanje in ocenjeno letno proizvodno zmogljivost rudnikov urana in obratov za predelavo uranove rude ter obratov za predelavo torijeve rude kot tudi tekočo letno proizvodnjo takšnih rudnikov in obratov za predelavo za Slovenijo kot celoto. Slovenija mora na zahtevo Agencije dati informacije o tekoči letni proizvodnji posameznega rudnika ali obrata za predelavo. Za posredovanje teh informacij se ne zahteva podrobno vodenje evidence jedrskega materiala;
(vi) informacije o izvirnem materialu, ki ni dosegel sestave in čistosti, ustrezne za izdelovanje goriva ali za izotopsko obogatitev, kot sledi:
(a) količine, kemično sestavo, uporabo ali predvideno uporabo takšnega materiala bodisi za jedrsko ali nejedrsko uporabo za vsako lokacijo v Sloveniji, na kateri je material prisoten v količinah, ki presegajo deset ton urana in/ali dvajset ton torija, in za druge lokacije s količinami, ki so večje od ene tone, skupno količino za Slovenijo kot celoto, če presega deset ton urana ali dvajset ton torija. Za posredovanje teh informacij se ne zahteva podrobno vodenje evidence jedrskega materiala;
(b) količine, kemično sestavo in namembni kraj za vsak izvoz takšnega materiala iz Slovenije za izrecno nejedrske namene v količinah, ki presegajo:
(1) deset ton urana ali pri zaporednem izvozu urana iz Slovenije v isto državo, pri čemer je vsak izvoz manjši od desetih ton, skupaj z drugimi pa presega deset ton na leto;
(2) dvajset ton torija ali pri zaporednem izvozu torija iz Slovenije v isto državo, pri čemer je vsak izvoz manjši od dvajsetih ton, skupaj z drugimi pa presega dvajset ton na leto;
(c) količine, kemično sestavo, sedanjo lokacijo in uporabo ali predvideno uporabo vsakega uvoza takšnega materiala v Slovenijo za izrecno nejedrske namene v količinah, ki presegajo:
(1) deset ton urana ali pri zaporednem uvozu urana v Slovenijo, pri čemer je vsak uvoz manjši od desetih ton, skupaj z drugimi pa presega deset ton na leto;
(2) dvajset ton torija ali pri zaporednem uvozu torija v Slovenijo, pri čemer je vsak uvoz manjši od dvajsetih ton, skupaj z drugimi pa presega dvajset ton na leto;
pri čemer se razume, da se informacije o takšnem materialu, ki je namenjen za nejedrsko uporabo, ne zahtevajo, potem ko je material v svoji nejedrski obliki končne uporabe.
(vii) (a) informacije glede količin, uporab in lokacij jedrskega materiala, oproščenega varovanja v skladu s 37. členom Sporazuma o varovanju;
(b) informacije glede količin (ki so lahko v obliki ocen) in uporab na vsaki lokaciji jedrskega materiala, oproščenega varovanja v skladu z odstavkom (b) 36. člena Sporazuma o varovanju, ki še ni v nejedrski obliki končne uporabe, v količinah, ki presegajo tiste, določene v 37. členu Sporazuma o varovanju. Za posredovanje teh informacij se ne zahteva podrobno vodenje evidence jedrskega materiala;
(viii) informacije glede lokacije ali nadaljnje obdelave srednje- ali visokoaktivnih odpadkov ali odpadkov, ki vsebujejo plutonij, visokoobogaten uran ali uran-233, za katere je varovanje prenehalo v skladu z 11. členom Sporazuma o varovanju. Za namen tega odstavka “nadaljnja obdelava” ne vključuje prepakiranja odpadkov ali njihove nadaljnje priprave brez ločevanja elementov zaradi shranjevanja ali odlaganja;
(ix) naslednje informacije glede navedene opreme in nejedrskega materiala s seznama Priloga II:
(a) za vsak izvoz takšne opreme in materiala iz Slovenije: identiteto, količino, lokacijo predvidene uporabe v državi prejemnici in datum oziroma predvideni datum izvoza;
(b) na izrecno zahtevo Agencije potrditev s strani Slovenije kot države uvoznice informacij, ki jih je Agenciji o izvozu takšne opreme in materiala v Slovenijo posredovala druga država;
(x) splošne načrte za naslednje desetletno obdobje, pomembne za razvoj jedrskega gorivnega cikla (vključno z načrtovanimi raziskovalnimi in razvojnimi dejavnostmi, povezanimi z jedrskim gorivnim ciklom), ko jih odobrijo ustrezni organi v Sloveniji.
b. Slovenija si po najboljših močeh prizadeva, da Agenciji predloži naslednje informacije:
(i) splošen opis in informacije o podrobnejši opredelitvilokacije raziskovalnih in razvojnih dejavnosti, povezanih z jedrskim gorivnim ciklom, ki ne vključujejo jedrskega materiala in so izrecno povezane z obogatitvijo, predelavo jedrskega goriva ali obdelavo srednje- ali visokoaktivnih odpadkov, ki vsebujejo plutonij, visokoobogaten uran ali uran-233, ki se izvajajo kjer koli v Sloveniji, ki pa jih Slovenija ne financira, posebej ne odobrava ali nadzoruje oziroma se ne izvajajo v njenem imenu. Za namen tega odstavka “obdelava” srednje- ali visokoaktivnih odpadkov ne vključuje prepakiranja odpadkov ali njihove nadaljnje priprave brez ločevanja elementov zaradi shranjevanja ali odlaganja;
(ii) splošen opis dejavnosti in identiteto osebe ali pravne osebe, ki takšne dejavnosti izvaja na lokacijah, ki jih je Agencija odkrila zunaj mesta in za katere Agencija meni, da bi lahko bile funkcionalno povezane z dejavnostmi na tem mestu. Takšne informacije se dajo na posebno zahtevo Agencije. Informacije se dajo po posvetovanju z Agencijo in pravočasno.
c. Na zahtevo Agencije Slovenija zagotovi dopolnitev ali pojasnitev katere koli informacije, ki jo je dala po tem členu, če je pomembna za varovanje.
3. člen
a. Slovenija predloži Agenciji informacije, določene v točkah (i), (iii), (iv), (v), (vi)(a), (vii) in (x) odstavka a 2. člena ter v točki (i) odstavka b 2. člena, v 180 dneh po začetku veljavnosti tega protokola.
b. Slovenija Agenciji vsako leto do 15. maja predloži dopolnitve informacij, omenjene v zgornjem odstavku a, za obdobje, ki zajema prejšnje koledarsko leto. Če se predhodno predložene informacije niso spremenile, Slovenija to navede.
c. Slovenija Agenciji vsako leto do 15. maja predloži informacije, določene v podtočkah (b) in (c) točke (vi)odstavka a 2. člena za obdobje, ki zajema prejšnje koledarsko leto.
d. Slovenija Agenciji vsake četrt leta predloži informacije, določene v podtočki (a) točke (ix) odstavka a 2. člena. Te informacije se predložijo v šestdesetih dneh po koncu vsakega četrtletja.
e. Slovenija Agenciji predloži informacije, določene v točki (viii) odstavka a 2. člena, 180 dni pred nadaljnjo obdelavo, do 15. maja vsako leto pa informacije o spremembah lokacije za obdobje, ki zajema prejšnje koledarsko leto.
f. Slovenija in Agencija se dogovorita o času in pogostnosti predložitve informacij, določenih v točki (ii) odstavka a 2. člena.
g. Slovenija Agenciji predloži informacije iz podtočke (b) točke (ix)odstavka a 2. člena v šestdesetih dneh po zahtevi Agencije.
DODATNI DOSTOP
4. člen
Naslednje velja v zvezi z uresničevanjem dodatnega dostopa po 5. členu tega protokola:
a. Agencija ne poskuša mehanično ali sistematično preverjati informacij, omenjenih v 2. členu, vendar pa ima dostop do:
(i) katere koli lokacije, omenjene v točki (i) ali (ii) odstavka a 5. člena na selektivni podlagi, da ne bo neprijavljenega jedrskega materiala in dejavnosti;
(ii) katere koli lokacije, omenjene v odstavku b ali c 5. člena, da bi rešili vprašanje v zvezi s pravilnostjo in popolnostjo predloženih informacij v skladu z 2. členom ali da bi pojasnili neskladnost v zvezi s temi informacijami;
(iii) katere koli lokacije, omenjene v točki (iii) odstavka a 5. člena, v tolikšni meri, kot je za Agencijo potrebno, da zaradi varovanja potrdi izjavo Slovenije o stanju razgradnje objekta ali lokacije zunaj jedrskih objektov, kjer se je jedrski material običajno uporabljal.
b. (i) Agencija najavi Sloveniji dostop vsaj 24 ur vnaprej, razen kot je določeno v točki (ii) spodaj.
(ii) Za dostop do katerega koli kraja na mestu, ki se zahteva v zvezi z obiski za verifikacijo projektnih podatkov ali z ad hoc ali rutinskimi inšpekcijami na tem mestu, se vnaprejšnje obvestilo, če Agencija tako zahteva, da vsaj dve uri prej, v izrednih okoliščinah pa tudi v manj kot dveh urah.
c. Vnaprejšnje obvestilo je pisno in v njem se navedejo razlogi za dostop in dejavnosti, ki se bodo izvajale med takšnim dostopom.
d. V primeru spornega vprašanja ali neskladnosti Agencija da Sloveniji možnost, da pojasni in olajša reševanje vprašanja ali neskladnosti. Takšna možnost bo dana, preden se zahteva dostop, razen če Agencija meni, da bi odložitev dostopa vplivala na namen, zaradi katerega se dostop zahteva. Agencija o vprašanju ali neskladnosti v nobenem primeru ne sprejema kakršnih koli odločitev, preden Sloveniji ni bila dana takšna možnost.
e. Dostop je možen le med rednim delovnim časom, razen če se Slovenija strinja z drugačno rešitvijo.
f. Slovenija ima pravico, da inšpektorje Agencije med dostopom spremljajo predstavniki Slovenije, če to inšpektorjev ne zadržuje ali kako drugače ovira pri opravljanju njihovih nalog.
5. člen
Slovenija Agenciji omogoči dostop do:
a. (i) katerega koli kraja na mestu;
(ii) katere koli lokacije, ki jo je Slovenija določila v skladu s točkami (v) – (viii) odstavka a 2. člena;
(iii) katerega koli razgrajenega objekta ali razgrajene lokacije zunaj jedrskih objektov, kjer se je jedrski material običajno uporabljal;
b. katere koli lokacije, ki jo je Slovenija določila v skladu s točkami (i), (iv), (ix)(b) odstavka a 2. člena ali odstavkom b 2. člena, ki ni ena od lokacij, omenjenih v zgornji točki (i) odstavka a, pod pogojem da, si Slovenija po najboljših močeh prizadeva, da nemudoma izpolni zahteve Agencije z drugimi sredstvi, če takega dostopa ni sposobna omogočiti;
c. katere koli lokacije, ki jo je določila Agencija, ki ni ena od lokacij, omenjenih v zgornjih odstavkih a in b, zaradi jemanja vzorcev iz okolja, značilnih za posamezno lokacijo, pod pogojem, da si Slovenija po najboljših močeh prizadeva, da nemudoma izpolni zahteve Agencije na bližnjih lokacijah ali z drugimi sredstvi, če takega dostopa ni sposobna omogočiti.
6. člen
Pri uresničevanju 5. člena lahko Agencija izvaja naslednje dejavnosti:
a. za dostop v skladu s točko (i) ali (iii) odstavka a 5. člena: vizualno opazovanje, zbiranje vzorcev iz okolja, uporabo naprav za odkrivanje in merjenje sevanja, uporabo pečatov in drugih sredstev za prepoznavanje in ugotavljanje nepooblaščenih posegov, ki so določeni v dopolnilnih dogovorih, in druge objektivne ukrepe, za katere je bilo dokazano, da so tehnično izvedljivi, in katerih uporabo je odobril Svet guvernerjev (v nadaljnjem besedilu Svet) po posvetovanjih med Agencijo in Slovenijo;
b. za dostop v skladu s točko (ii) odstavka a 5. člena: vizualno opazovanje, štetje kosov jedrskega materiala, nedestruktivna merjenja in jemanje vzorcev, uporabo naprav za odkrivanje in merjenje sevanja, pregledovanje dokumentov v zvezi s količinami in izvorom materiala in razpolaganjem z njim, zbiranje vzorcev iz okolja in druge objektivne ukrepe, za katere je bilo dokazano, da so tehnično izvedljivi, in katerih uporabo je odobril Svet po posvetovanjih med Agencijo in Slovenijo;
c. za dostop v skladu z odstavkom b 5. člena: vizualno opazovanje, zbiranje vzorcev iz okolja, uporabo naprav za odkrivanje in merjenje sevanja, pregledovanje dokumentov o proizvodnji in pošiljanju v zvezi z varovanjem in druge objektivne ukrepe, za katere je bilo dokazano, da so tehnično izvedljivi, in katerih uporabo je odobril Svet po posvetovanjih med Agencijo in Slovenijo;
d. za dostop v skladu z odstavkom c 5. člena: zbiranje vzorcev iz okolja, in če rezultati ne rešijo vprašanja ali neskladnosti na lokaciji, ki jo je Agencija določila v skladu z odstavkom c 5. člena, uporabo vizualnega opazovanja, naprav za odkrivanje in merjenje sevanja ter druge objektivne ukrepe na tej lokaciji, kot je bilo dogovorjeno med Slovenijo in Agencijo.
7. člen
a. Na zahtevo Slovenije se Agencija in Slovenija dogovorita o nadzorovanem dostopu v skladu s tem protokolom, da bi preprečili razširjanje zaupnih informacij, da bi izpolnili varnostne zahteve ali zahteve za fizično zaščito oziroma da bi zavarovali lastninsko ali poslovno občutljive informacije. Takšni dogovori Agencije ne ovirajo pri dejavnostih, ki so potrebne za verodostojno zagotovitev, da na posamezni lokaciji ni neprijavljenega jedrskega materiala in dejavnosti, vključno z rešitvijo vprašanja v zvezi s pravilnostjo in popolnostjo informacij, omenjenih v 2. členu, ali z nedoslednostjo v zvezi s temi informacijami.
b. Slovenija lahko pri predložitvi informacij, omenjenih v 2. členu, Agencijo obvesti o krajih na mestu ali lokaciji, na katerih bi bil možen nadzorovan dostop.
c. Do začetka veljavnosti katerih koli potrebnih dopolnilnih dogovorov ima Slovenija možnost nadzorovanega dostopa v skladu z določbami zgornjega odstavka a.
8. člen
Nič v tem protokolu Sloveniji ne preprečuje, da ne bi Agenciji ponudila dostopa do dodatnih lokacij poleg tistih, omenjenih v 5. in 9. členu, ali da od Agencije ne bi zahtevala izvedbe verifikacijskih dejavnosti na določeni lokaciji. Agencija si po najboljših močeh prizadeva ugoditi takšni zahtevi.
9. člen
Slovenija mora Agenciji omogočiti dostop do lokacij, ki jih je določila Agencija, za jemanje vzorcev iz okolja na širšem območju pod pogojem, da si Slovenija po najboljših močeh prizadeva izpolniti zahteve Agencije na alternativnih lokacijah, če ni zmožna omogočiti takšnega dostopa. Agencija takšnega dostopa ne zahteva, dokler uporabe jemanja vzorcev iz okolja na širšem območju in postopkovne ureditve za to ne odobri Svet po posvetovanjih med Agencijo in Slovenijo.
10. člen
Agencija obvesti Slovenijo o:
a. dejavnostih, ki se izvajajo v skladu s tem protokolom, vključno s tistimi glede kakršnih koli vprašanj ali nedoslednosti, na katere je Agencija Slovenijo opozorila, v šestdesetih dneh po tem, ko je Agencija izvedla dejavnosti;
b. rezultatih dejavnosti glede kakršnih koli vprašanj ali nedoslednosti, na katere je Agencija Slovenijo opozorila, in sicer čim prej, vendar v vsakem primeru v tridesetih dneh po tem, ko je Agencija prišla do rezultatov;
c. ugotovitvah, do katerih je prišla na podlagi svojih dejavnosti v skladu s tem protokolom. Ugotovitve se sporočajo letno.
IMENOVANJE INŠPEKTORJEV AGENCIJE
11. člen
a. (i) Generalni direktor uradno obvesti Slovenijo o odobritvi Sveta glede katerega koli uslužbenca Agencije za inšpektorja za varovanje. Če Slovenija v treh mesecih po prejemu obvestila o odobritvi Sveta generalnega direktorja ne obvesti o svoji zavrnitvi takšnega uslužbenca za inšpektorja za Slovenijo, velja inšpektor, o katerem je bila Slovenija obveščena, za imenovanega;
(ii) generalni direktor v odgovoru na zahtevo Slovenije ali na lastno pobudo takoj obvesti Slovenijo o umiku imenovanja katerega koli uslužbenca za inšpektorja za Slovenijo.
b. Za obvestilo omenjeno v zgornjem odstavku a se šteje, da ga je Slovenija prejela sedem dni po datumu, ko je Agencija Sloveniji poslala obvestilo s priporočeno pošto.
VIZUMI
12. člen
Slovenija v enem mesecu po prejemu zahtevka imenovanemu inšpektorju, določenemu v zahtevku, priskrbi ustrezne vizume za večkraten vstop/izstop in/ali prehod, kadar se to zahteva, da inšpektorju zagotovi, da vstopi na ozemlje Slovenije in na njem ostane zaradi opravljanja svojih nalog. Vsi zahtevani vizumi veljajo vsaj eno leto in se po potrebi obnovijo, da zajamejo trajanje inšpektorjevega imenovanja za Slovenijo.
DOPOLNILNI DOGOVORI
13. člen
a. Kadar Slovenija ali Agencija ugotovi, da je treba v dopolnilnih dogovorih določiti, kako naj se uporabljajo ukrepi, določeni v tem protokolu, se Slovenija in Agencija dogovorita o takšnih dopolnilnih dogovorih v devetdesetih dneh po začetku veljavnosti tega protokola, ali kadar je potreba po takšnih dopolnilnih dogovorih ugotovljena po začetku veljavnosti tega protokola, v devetdesetih dneh po datumu takšne ugotovitve.
b. Do začetka veljavnosti katerih koli potrebnih dopolnilnih dogovorov ima Agencija pravico uporabljati ukrepe, ki so določeni v tem protokolu.
KOMUNIKACIJSKI SISTEMI
14. člen
a. Slovenija dovoli in ščiti svobodne komunikacije Agencije zaradi uradnih namenov med inšpektorji Agencije v Sloveniji ter sedežem Agencije in/ali območnimi uradi, vključno z nadzorovanim in nenadzorovanim prenosom informacij, ki jih oddajajo zadrževalne in/ali nadzorne oziroma merilne naprave Agencije. Agencija ima po posvetovanju s Slovenijo pravico do uporabe mednarodno vzpostavljenih sistemov neposrednih komunikacij, vključno s satelitskimi sistemi in drugimi oblikami telekomunikacije, ki se v Sloveniji ne uporabljajo. Na zahtevo Slovenije ali Agencije se podrobnosti o uresničevanju tega odstavka glede nadzorovanega ali nenadzorovanega prenosa informacij, ki jih oddajajo zadrževalne in/ali nadzorne oziroma merilne naprave Agencije, določijo v dopolnilnih dogovorih.
b. Pri komunikaciji in prenosu informacij, kot sta določena v zgornjem odstavku a, se upošteva potreba po varovanju lastninsko ali poslovno občutljivih informacij ali projektnih podatkov, ki jih Slovenija obravnava kot posebej občutljive.
VAROVANJE ZAUPNIH INFORMACIJ
15. člen
a. Agencija vzdržuje strog režim za zagotavljanje učinkovitega varovanja pred razkritjem poslovnih, tehnoloških in industrijskih skrivnosti ter drugih zaupnih informacij, ki jih izve, vključno s takšnimi informacijami, ki jih izve pri izvajanju tega protokola.
b. Režim, omenjen v zgornjem odstavku a, med drugim vključuje določbe v zvezi s:
(i) splošnimi načeli in z njimi povezanimi ukrepi za ravnanje z zaupnimi informacijami;
(ii) pogoji zaposlovanja osebja v zvezi z varovanjem zaupnih informacij;
(iii) postopki ob kršitvah ali domnevnih kršitvah zaupnosti.
c. V zgornjem odstavku a omenjeni režim Svet odobri in ga redno preverja.
PRILOGE
16. člen
a. Priloge tega protokola so njegov sestavni del. Razen za namene spremembe prilog pomeni izraz “protokol”, kot je uporabljen v tem aktu, protokol in priloge skupaj.
b. Seznam dejavnosti, naveden v Prilogi I, in seznam opreme ter materiala, naveden v Prilogi II, lahko Svet spremeni na podlagi nasveta odprte delovne skupine izvedencev, ki jo ustanovi Svet. Vsaka takšna sprememba začne veljati štiri mesece po tem, ko jo sprejme Svet.
ZAČETEK VELJAVNOSTI
17. člen
a. Ta protokol začne veljati z dnem, ko Agencija prejme od Slovenije pisno obvestilo, da so izpolnjene zakonske in/ali ustavne zahteve Slovenije za začetek veljavnosti.
b. Slovenija lahko kadar koli pred začetkom veljavnosti tega protokola izjavi, da bo ta protokol uporabljala začasno.
c. Generalni direktor vse države članice Agencije nemudoma obvesti o vsaki izjavi o začasni uporabi tega protokola in o začetku njegove veljavnosti.
POMEN IZRAZOV
18. člen
Za namen tega protokola:
a. Raziskovalne in razvojne dejavnosti, povezane z jedrskim gorivnim ciklom, pomenijo tiste dejavnosti, ki so izrecno povezane s katerim koli razvojnim vidikom postopka ali sistema katere koli od naslednjih postavk:
– pretvorbe jedrskega materiala,
– obogatitve jedrskega materiala,
– izdelovanja jedrskega goriva,
– reaktorjev,
– kritičnih objektov,
– predelave jedrskega goriva,
– obdelave (brez prepakiranja odpadkov ali priprave brez ločevanja elementov zaradi shranjevanja ali odlaganja) srednje- ali visokoaktivnih odpadkov, ki vsebujejo plutonij, visokoobogaten uran ali uran-233,
vendar ne vključujejo dejavnosti v zvezi s teoretičnim ali temeljnim znanstvenim raziskovanjem ali z raziskovanjem in razvojem uporabe radioaktivnih izotopov v industriji, medicini, hidrologiji in kmetijstvu, vplivov na zdravje in okolje ter izboljšanega vzdrževanja.
b. Mesto pomeni tisto območje, ki ga Slovenija razmeji v ustreznih projektnih podatkih za objekt, vključno z zaprtim objektom, ter v ustrezni informaciji o lokaciji zunaj jedrskih objektov, kjer se jedrski material običajno uporablja, vključno z zaprto lokacijo zunaj jedrskih objektov, kjer se je jedrski material običajno uporabljal (to je omejeno na lokacije z vročimi celicami ali na lokacije, kjer so opravljali dejavnosti, povezane s pretvorbo, obogatitvijo, izdelovanjem goriva ali predelavo). Vključevati mora tudi vse naprave, nameščene skupaj z objektom ali lokacijo, za opravljanje bistvenih storitev ali njihovo uporabo, kar vključuje: vroče celice za obdelavo obsevanih materialov brez jedrskega materiala, naprave za ravnanje z odpadki, njihovo shranjevanje in odlaganje ter stavbe v zvezi z navedenimi dejavnostmi, ki jih je Slovenija določila v skladu z zgornjo točko (iv) odstavka a 2. člena.
c. Razgrajeni objekt ali razgrajena lokacija zunaj jedrskega objekta pomeni napravo ali lokacijo, s katere so bile preostale strukture in oprema, ki so bistvene za njeno uporabo, odstranjene ali onesposobljene, tako da se ne uporablja za shranjevanje in se ne more več uporabljati za ravnanje z jedrskim materialom, njegovim obdelovanjem ali uporabo.
d. Zaprti objekt ali zaprta lokacija zunaj jedrskega objekta pomeni napravo ali lokacijo, na kateri so bile dejavnosti ustavljene in jedrski material odstranjen, vendar objekt ni bil razgrajen.
e. Visokoobogaten uran pomeni uran, ki vsebuje 20 ali več odstotkov izotopa urana-235.
f. Jemanje vzorcev iz okolja, značilnih za posamezno lokacijo pomeni zbiranje vzorcev iz okolja (to je zraka, vode, vegetacije, zemlje, umazanije) na lokaciji in v njeni neposredni bližini, ki jo je Agencija izbrala zaradi pomoči Agenciji pri ugotavljanju neprijavljenega jedrskega materiala ali jedrskih dejavnosti na določeni lokaciji.
g. Jemanje vzorcev iz okolja na širšem območju pomeni zbiranje vzorcev iz okolja (to je zraka, vode, vegetacije, zemlje, umazanije) na nizu lokacij, ki ga je Agencija izbrala zaradi pomoči Agenciji pri ugotavljanju neprijavljenega jedrskega materiala ali jedrskih dejavnosti na širšem območju.
h. Jedrski material pomeni kateri koli osnoven ali poseben cepljivi material, kot je določeno v XX. členu Statuta. Izraz osnoven material se ne razlaga v pomenu rude ali ostankov rude. Vsaka odločitev Sveta v smislu XX. člena Statuta Agencije po začetku veljavnosti tega protokola, ki razširja materiale, ki se štejejo za osnoven material ali poseben cepljivi material, bo po tem protokolu začela veljati šele, ko jo sprejme Slovenija.
i. Objekt pomeni:
(i) reaktor, kritični objekt, obrat za pretvorbo, obrat za izdelavo, obrat za predelavo, obrat za ločevanje izotopov ali ločeno skladišče ali
(ii) katero koli lokacijo, na kateri se običajno uporablja jedrski material v količinah nad enim efektivnim kilogramom.
j. Lokacija zunaj jedrskih objektov pomeni katero koli napravo ali lokacijo, ki ni objekt, kjer se jedrski material običajno uporablja v količinah enakih enemu efektivnemu kilogramu ali manj.
SESTAVLJENO na Dunaju dne 26.novembra 1998 v dveh izvirnikih v angleškem jeziku.
Za
REPUBLIKO SLOVENIJO
mag. Miroslav Gregorič l. r.
Za
MEDNARODNO AGENCIJO
ZA ATOMSKO ENERGIJO
Mohamed ElBaradei l. r.
PRILOGA I
SEZNAM DEJAVNOSTI, KI SO OMENJENE V TOČKI (iv) ODSTAVKA a 2. ČLENA PROTOKOLA
(i) Izdelovanje rotorskih cevi za centrifuge ali sestavljanje plinskih centrifug
Rotorska cev za centrifugo pomeni tankostenski valj, kot je navedeno v točki 5.1.1 (b) Priloge II.
Plinska centrifuga pomeni centrifuge kot so opisane v uvodnem pojasnilu k točki 5.1 Priloge II.
(ii) Izdelovanje difuzijskih pregrad
Difuzijska pregrada pomeni tanek, porozen filter, kot je opisano v točki 5.3.1 (a) Priloge II.
(iii) Izdelovanje ali sestavljanje sistemov z lasersko tehnologijo
Sistemi z lasersko tehnologijo pomenijo sisteme, ki so sestavljeni iz delov, kot je opisano v točki 5.7 Priloge II.
(iv) Izdelovanje ali sestavljanje elektromagnetnih ločevalnikov izotopov
Elektromagnetni ločevalnik izotopov pomenijo predmete, ki so opisani v točki 5.9.1 Priloge II in vsebujejo ionske izvore, kot je opisano v točki 5.9.1 (a) Priloge II.
(v) Izdelovanje ali sestavljanje kolon ali opreme za ekstrakcijo
Kolone ali oprema za ekstrakcijo pomeni predmete, kot je opisano v točkah 5.6.1, 5.6.2, 5.6.3, 5.6.5, 5.6.6, 5.6.7 in 5.6.8 Priloge II.
(vi) Izdelovanje aerodinamičnih ločevalnih šob in vrtinčnih cevi
Aerodinamične ločevalne šobe ali vrtinčne cevi pomenijo ločevalne šobe in vrtinčne cevi, kot je opisano v točkah 5.5.1 in 5.5.2 Priloge II.
(vii) Izdelovanje ali sestavljanje sistemov za generiranje uranove plazme
Sistemi za generiranje uranove plazme pomenijo sisteme za generiranje uranove plazme, kot je opisano v točki 5.8.3 Priloge II.
(viii) Izdelovanje cirkonijevih cevi
Cirkonijeve cevi pomenijo cevi, kot je opisano v točki 1.6 Priloge II.
(ix) Izdelovanje in koncentracija težke vode ali devterija
Težka voda ali devterij pomeni devterij, težko vodo (devterijev oksid) in katero koli devterijevo spojino, v kateri je razmerje med devterijevimi atomi in vodikom večje od 1 : 5000.
(x) Izdelovanje grafita jedrske kakovosti
Grafit jedrske kakovosti pomeni grafit s čistostjo manj od 5 ppm ekvivalentov bora in z gostoto nad 1,5 g/cm3.
(xi) Izdelovanje vsebnikov za obsevano gorivo
Vsebnik za obsevano gorivo pomeni posodo za prevoz in/ali shranjevanje obsevanega goriva, ki zagotavlja kemijsko, toplotno in radiološko zaščito ter med ravnanjem, prevozom in shranjevanjem odvaja zaostalo toploto.
(xii) Izdelovanje reaktorskih kontrolnih palic
Reaktorske kontrolne palice pomenijo palice, kot je opisano v točki 1.4 Priloge II.
(xiii) Izdelovanje kritično varnih rezervoarjev in posod
Kritično varni rezervoarji in posode pomenijo predmete, kot je opisano v točkah 3.2 in 3.4 Priloge II.
(xiv) Izdelovanje strojev za rezanje obsevanih gorivnih elementov
Stroji za rezanje obsevanih gorivnih elementov pomenijo opremo, kot je opisano v točkah 3.2 in 3.4 Priloge II.
(xv) Konstrukcija vročih celic
Vroča celica pomeni vročo celico ali več medsebojno povezanih vročih celic, ki imajo skupno prostornino najmanj 6 m3 in ščitenje, ki je enako ali večje od ekvivalenta 0,5 m betona z gostoto 3,2g/cm3 ali večjo in ima opremo za daljinsko upravljanje.
PRILOGA II
SEZNAM OPREME IN NEJEDRSKIH MATERIALOV ZA POROČANJE O UVOZU IN IZVOZU V SKLADU S TOČKO (ix) ODSTAVKA a 2. ČLENA
1 Reaktorji in njihova oprema
1.1 Celoviti jedrski reaktorji
Jedrski reaktorji, ki so sposobni vzdrževati nadzorovano, samostojno verižno jedrsko reakcijo; izključeni so reaktorji z nično energijo – to so reaktorji, ki so konstruirani tako, da pri polni obremenitvi ne proizvedejo več kot 100 gramov plutonija na leto.
POJASNILO
“Jedrski reaktor” načeloma obsega postavke, ki so znotraj reaktorske posode ali so z njo neposredno spojene, opremo, ki nadzira raven moči v sredici, in sestavne dele, ki običajno vsebujejo primarno hladilo reaktorske sredice ali so v neposrednem stiku z njim ali pa ga nadzirajo.
Namen te določbe ni izvzeti reaktorjev, ki bi jih bilo v razumnih okvirih mogoče spremeniti tako, da bi lahko proizvajali bistveno več kot 100 gramov plutonija na leto. Reaktorji, konstruirani za neprekinjeno delovanje pri znatnih ravneh moči ne glede na svojo zmogljivost proizvajanja plutonija, se ne štejejo za “reaktorje z nično energijo”.
1.2 Reaktorske tlačne posode
Kovinske posode kot celote ali kot njihovi glavni tovarniško izdelani deli, ki so posebej konstruirani ali pripravljeni tako, da lahko vsebujejo sredico jedrskega reaktorja, kot ga določa točka 1.1, in so sposobni prenašati delovni tlak primarnega hladila.
POJASNILO
Točka 1.2 velja tudi za glavo reaktorske tlačne posode kot enega glavnih tovarniško izdelanih delov tlačne posode.
Dele notranjosti reaktorja (npr. nosilne stebre in plošče za sredico in druge notranje dele posode, vodila za kontrolne palice, toplotne ščite, lopute, mrežne plošče, difuzijske plošče itd.) običajno dobavi pooblaščeni dobavitelj reaktorja. V nekaterih primerih so določeni notranji nosilni sestavni deli vključeni v izdelavo tlačne posode. Dobava teh sestavnih delov, ki bistveno vplivajo na zanesljivo in varno delovanje reaktorja (s tem pa tudi na garancije in odgovornost dobavitelja reaktorja), zunaj prvotno dogovorjenih dobav reaktorja naj ne bi bila običajna praksa. Takšen način dobave se šteje za malo verjeten, čeprav ločena dobava teh velikih, dragih posebnih predmetov, ki so posebej konstruirani in pripravljeni, ni nemogoča.
1.3 Naprave za polnjenje in praznjenje reaktorskega goriva
Oprema, ki je posebej konstruirana ali izdelana za vnašanje ali odstranjevanje goriva v jedrskem reaktorju, kot ga določa točka 1.1, in omogoča posege med obratovanjem reaktorja ali tehnično zahtevno postavljanje in vstavljanje predmetov in dovoljuje obsežno zamenjavo goriva pri ustavljenem reaktorju v primerih, ko ni neposredne vizualne kontrole in pristopa do jedrskega goriva.
1.4 Reaktorske kontrolne palice
Palice, ki so posebej konstruirane ali izdelane za nadzor in krmiljenje hitrosti jedrske reakcije v reaktorjih, kot jih določa točka 1.1.
POJASNILO
Poleg nevtronskih absorpcijskih delov ta točka vključuje še opremo nosilnih in obesnih delov, če so dostavljeni ločeno v ta namen.
1.5 Reaktorske tlačne cevi
Cevi, ki so posebej konstruirane ali izdelane za vstavitev gorivnih elementov in primarnega hladila v reaktorju, kot jih določa točka 1.1 pri delovnem tlaku nad 5,1 MPa.
1.6 Cirkonijeve cevi
Čisti cirkonij in cirkonij v zlitinah v obliki cevi ali snopov cevi v količinah, ki presegajo promet nad 500 kg v 12 mesecih, in ki so posebej konstruirane ali izdelane za uporabo v jedrskih reaktorjih, kot jih določa točka 1.1, in kjer je masno razmerje med hafnijem in cirkonijem manjše od 1 : 500.
1.7 Črpalke primarnega hladila
Črpalke, ki so posebej konstruirane ali izdelane za kroženje primarnega hladila v jedrskih reaktorjih, kot jih določa točka 1.1.
POJASNILO
Posebej konstruirane ali izdelane črpalke lahko obsegajo tudi tehnološko zahtevne zatesnjene ali večkrat zatesnejene sisteme, da se prepreči iztekanje primarnega hladila, črpalke z oklopljenim pogonom in črpalke s sistemi inercijske mase. Ta opredelitev obsega tudi črpalke, za katere je bilo izdano potrdilo v skladu s standardom NC-1 ali enakovrednimi standardi.
2 Nejedrski materiali za reaktorje
2.1 Devterij in težka voda
Devterij, težka voda (devterijev oksid) in katera koli druga devterijeva spojina, v kateri je razmerje med številom devterijevih in vodikovih atomov večje od 1 : 5000, namenjena za uporabo v jedrskih reaktorjih, kot jih določa točka 1.1, v količinah nad 200 kilogramov devterijevih atomov za katero koli državo prejemnico v 12 mesecih.
2.2 Grafit jedrske kakovosti
Grafit s čistostjo manj od 5 ppm ekvivalentov bora in z gostoto nad 1,5 g/cm3 za uporabo v jedrskih reaktorjih, kot jih določa točka 1.1, v količinah nad 30 ton (3 x 104 kg) za katero koli državo prejemnico v 12 mesecih.
POJASNILO
Zaradi poročanja o izvozu vlada določi, ali je grafit, ki se izvaža in ki ustreza zgornjim specifikacijam, namenjen za uporabo v jedrskih reaktorjih.
3 Obrati za predelavo obsevanih gorivnih elementov in oprema, ki je posebej konstruirana ali izdelana v ta namen
3.1 Stroji za rezanje obsevanih gorivnih elementov
UVODNA OPOMBA
Pri predelavi izrabljenega goriva se plutonij in uran ločita od močno radioaktivnih cepitvenih produktov in drugih transuranov. Za to ločevanje je mogoče uporabiti različne tehnične procese. Vendar je z leti postal najbolj uporaben in sprejemljiv proces Purex. Purex obsega raztopitev obsevanega jedrskega goriva v dušikovi kislini, ki ji sledi ločevanje urana, plutonija in cepitvenih produktov s solventno ekstrakcijo, za katero se uporablja mešanica tributilfosfata v organski raztopini.
V objektih za Purex potekajo podobni postopki, kot so: rezanje gorivnih elementov, raztapljanje goriva, solventna ekstrakcija in shranjevanje procesnih raztopin. Lahko so opremljeni tudi za termalno denitracijo uranovega nitrata, pretvorbo plutonijevega nitrata v oksid ali kovino in za obdelavo odpadnih tekočin s cepitvenimi produkti v obliko, primerno za dolgoročno shranjevanje ali odlaganje. Vendar se lahko v objektih za Purex značilne vrste postopkov in opreme za izvajanje navedenih postopkov razlikujejo zaradi več razlogov, kot na primer zaradi vrste in količine predelanega obsevanega jedrskega goriva in zaradi predvidene uporabe pridobljenega materiala in varnosti in vzdrževanja, upoštevanih pri projektiranju objekta.
Obrat za predelavo obsevanih gorivnih elementov vključuje opremo in sestavne dele, ki običajno pridejo v neposredni stik s procesnim tokom obsevanega goriva in glavnim tokom jedrskega materiala in cepitvenih produktov in jih neposredno krmilijo.
Ta proces, vključno s celovitim sistemom za pretvorbo plutonija in za izdelavo plutonijeve kovine, se lahko prepozna po ukrepih za preprečevanje kritičnosti (npr. z geometrijo), izpostavljenosti sevanju (npr. s ščitenjem) in za preprečevanje nevarnosti zastrupitve (npr. z osamitvijo).
Postavke opreme, za katere se šteje, da zanje velja besedna zveza “posebej konstruirana ali izdelana oprema” za predelavo obsevanih gorivnih elementov, obsegajo:
5.6 Stroji za rezanje obsevanih gorivnih elementov
UVODNA OPOMBA
Ta oprema prebije oblogo goriva in tako izpostavi obsevani jedrski material raztopitvi. Najpogosteje se uporabljajo posebej zasnovane kovinske rezalne škarje, čeprav se lahko uporablja tudi sodobnejša oprema, kot npr. laserji.
Daljinsko upravljana oprema, ki je posebej konstruirana ali izdelana za uporabo v obratih za predelavo obsevanega jedrskega goriva in se uporablja za rezanje, sekanje ali striženje gorivnih svežnjev ali palic.
3.2 Posode za raztapljanje
UVODNA OPOMBA
V posode za raztapljanje se običajno daje razsekano izrabljeno gorivo. V teh kritično varnih posodah se obsevano jedrsko gorivo raztopi v dušikovi kislini in se preostale obloge odstranijo iz postopka.
Kritično varne posode (na primer posode majhnega premera obročaste ali ploščate oblike), posebej konstruirane ali izdelane za uporabo v obratih za predelavo obsevanega jedrskega goriva, se uporabljajo za raztapljanje jedrskega goriva. Odporne so proti vročim, močno korozivnim tekočinam in omogočajo daljinsko upravljano polnjenje in vzdrževanje.
3.3 Solventni ekstraktorji in oprema zanje
UVODNA OPOMBA
V solventnem ekstraktorju sta tako raztopina obsevanega goriva iz posod za raztapljanje kot tudi organska raztopina, s katero se ločujejo uran, plutonij in produkti cepitve. Oprema za solventno ekstrakcijo je običajno zasnovana tako, da ustreza strogim obratovalnim parametrom, kot so dolga obratovalna življenjska doba brez potrebe po vzdrževanju ali z možnostjo enostavne zamenjave, enostavnost delovanja in nadzora ter prilagodljivost različnim razmeram, v katerih postopek poteka.
Posebej konstruirani ali izdelani solventni ekstraktorji, kot na primer pulzne kolone, mešalni usedalniki ali centrifugalni kontaktorji, ki se uporabljajo v obratih za predelavo obsevanega goriva. Solventni ekstraktorji morajo biti odporni proti koroziji z dušikovo kislino. Običajno so narejeni po izjemno visokih industrijskih standardih (vključno s posebim varjenjem, inšpekcijo, z uporabo kontrole kakovosti in za zagotavljanje kakovosti iz nizkoogljičnega nerjavnega jekla, titana, cirkonija ali drugih visokokakovostnih materialov.
3.4 Posode za shranjevanje kemikalij
UVODNA OPOMBA
Rezultat faze s solventna ekstrakcijo so trije glavni procesni tokovi procesne tekočine. Pri nadaljnji obdelavi vseh treh tokov se uporabljajo zadrževalne ali shranjevalne posode, in sicer:
(a) raztopina čistega uranovega nitrata se koncentrira s pomočjo uparjanja in se prenese v postopek denitracije, kjer se pretvori v uranov oksid. Ta oksid se ponovno uporabi v jedrskem gorivnem ciklu;
(b) raztopina intenzivno radioaktivnih produktov cepitve se običajno koncentrira z uparjanjem in shranjuje kot koncentrat procesne tekočine. Ta koncentrat se lahko kasneje uparja in pretvori v obliko, ki je primerna za zadrževanje ali shranjevanje;
(c) raztopina čistega plutonijevega nitrata se koncentrira in shrani, dokler ne gre v nadaljnji postopek. Zlasti pa so posode za zadrževanje ali shranjevanje plutonijevih raztopin zasnovane tako, da ne pride do kritičnosti, ki lahko nastane zaradi sprememb koncentracije in oblike tega toka.
Posebej konstruirane ali izdelane zadrževalne ali shranjevalne posode, ki se uporabljajo v obratih za predelavo obsevanega goriva, morajo biti odporne proti koroziji z dušikovo kislino. Običajno so narejene iz nizkoogljičnega nerjavnega jekla, titana, cirkonija ali drugih visokokakovostnih materialov. Opremljene so lahko z daljinskim upravljanjem in vzdrževanjem ter imajo lahko naslednje lastnosti za nadzor jedrske kritičnosti:
(1) stene ali notranji deli, izdelani iz materialov, ki vsebujejo najmanj 2% ekvivalenta bora, ali
(2) največji premer 175 mm za valjaste oblike ali
(3) največjo širino 75 mm za ploščate ali obročaste oblike.
3.5 Sistem za pretvorbo plutonijevega nitrata v plutonijev oksid
UVODNA OPOMBA
V večini predelovalnih obratov obsega ta končni postopek pretvorbo raztopine plutonijevega nitrata v plutonijev dioksid. Glavne funkcije tega postopka so: skladiščenje in prilagajanje dovajanega procesnega materiala, obarjanje in ločevanje na trdno snov in procesno tekočino, kalciniranje, ravnanje s produkti, prezračevanje, ravnanje z odpadki in nadziranje postopka.
Celotni sistemi, posebej konstruirani ali izdelani za pretvorbo plutonijevega nitrata v plutonijev oksid, so posebej prirejeni, da preprečijo jedrsko kritičnost in učinke sevanja ter zmanjšajo nevarnost zastrupitev na najnižjo možno mero.
3.6 Sistem za pretvorbo plutonijevega oksida v kovinski plutonij
UVODNA OPOMBA
Ta postopek, ki je lahko povezan s predelovalnim obratom, vključuje fluoriranje plutonijevega dioksida, običajno z visoko korozivnim vodikovim fluoridom, pri čemer nastane plutonijev fluorid, ki se potem reducira z uporabo kovinskega kalcija visoke čistosti, tako da nastaneta kovinski plutonij in žlindra kalcijevega fluorida. Glavne funkcije tega postopka so: fluoriranje (npr. z opremo, ki je izdelana iz plemenite kovine ali prevlečena z njo), redukcija kovine (npr. z uporabo keramičnih talilnikov), recikliranje žlindre, ravnanje s produkti, prezračevanje, ravnanje z odpadki in nadzor postopka.
Celotni sistemi, posebej konstruirani ali izdelani za pretvorbo plutonijevega oksida v kovinski plutonij, so posebej prirejeni, da preprečijo jedrsko kritičnost in učinke sevanja ter zmanjšajo nevarnost zastrupitev na najnižjo možno mero.
4 Obrati za proizvodnjo gorivnih elementov
“Obrati za proizvodnjo gorivnih elementov” sestojijo iz opreme, ki
(a) običajno pride v neposredni stik z jedrskim materialom ali neposredno predeluje ali preverja pretok jedrskega materiala ali pa
(b) neprepustno zapre jedrski material v oblogo goriva.
5 Obrati za ločevanje uranovih izotopov in oprema, razen analitičnih instrumentov, posebej konstruirana in izdelana v ta namen
Postavke opreme, za katere se šteje, da zanje velja besedna zveza “oprema, razen analitičnih inštrumentov, posebej konstruirana in izdelana” za ločevanje izotopov urana obsegajo:
5.6 Plinske centrifuge ter sestavni deli in sklopi, ki so posebej konstruirani ali izdelani za uporabo v plinskih centrifugah
UVODNA OPOMBA
Plinska centrifuga je običajno sestavljena iz tankostenskega valja (valjev) in premerom od 75 mm (3 cole) do 400 mm (16 col), ki je v vakuumu in se vrti z visoko obodno hitrostjo razreda velikosti 300 m/s ali več, pri čemer je njegova osrednja os navpična. Za dosego visoke hitrosti morajo imeti konstrukcijski materiali vrtljivih sestavnih delov visoko razmerje med trdnostjo in gostoto; sklop rotorja – in zato tudi njegovi posamezni sestavni deli – pa morajo biti izdelani z majhnimi dopustnimi odstopanji, da se zmanjša neuravnoteženost na najmanjšo možno mero. V primerjavi z drugimi centrifugami je za plinsko centrifugo za obogatitev urana značilno, da ima znotraj rotorske komore vrtljivo loputo diskaste oblike in mirujoč cevni sestav za dovajanje in odvajanje plinastega UF6, ki ga sestavljajo vsaj trije ločeni kanali, od katerih sta 2 priključena na lopatice, ki potekajo od osi rotorja proti obodu rotorske komore. V vakuumu je tudi več kritičnih elementov, ki se ne vrtijo in ki jih, čeprav so posebej konstruirani, ni težko izdelati niti niso izdelani iz posebnega materiala. Vendar pa je za centrifugo potrebno večje število teh sestavnih delov, tako da so lahko te količine pomemben podatek o končni uporabi.
5.1.1 Vrteči se sestavni deli
(a) Celoviti sklopi rotorjev:
To so tankostenski valji ali večje število med seboj povezanih tankostenskih valjev, ki so izdelani iz enega ali več materialov z visokim razmerjem med trdnostjo in gostoto, opisanih v pojasnilih k tej točki. Če so valji povezani, so spojeni z gibkimi spojkami ali obroči, ki so opisani v točki 5.1.1 (c). Rotor v končni obliki je opremljen z notranjimi loputami in končniki, ki so opisani v točkah 5.1.1 (d) in (e). Navedeno opremo je mogoče dobaviti tudi delno sestavljeno.
(b) Cevi za rotorje:
To so posebej konstruirani ali izdelani tankostenski valji debeline 12 mm ali manj, s premerom od 75 do 400 mm, ki so izdelani iz enega ali več materialov z visokim razmerjem med trdnostjo in gostoto, opisanih v pojasnilih k tej točki.
(c) Obroči ali spojke:
To so posebej konstruirane ali izdelane spojke za lokalno podporo rotorskih cevi ali za povezavo več rotorskih cevi. Spojke so kratki valji s prirobnico, z debelino sten do 3 mm in s premerom od 75 do 400 mm. Izdelane so iz materiala z visokim razmerjem med trdnostjo in gostoto, opisanega v pojasnilih k tej točki.
(d) Lopute:
To so posebej konstruirani ali izdelani diskasto oblikovani sestavni deli s premerom od 75 do 400 mm, ki se vgrajujejo v notranjost rotorskih cevi centrifuge in ločujejo odvodno komoro od glavne ločevalne komore ter v nekaterih primerih pomagajo pri kroženju plinastega UF6 v rotorski cevi. Izdelani so iz materiala z visokim razmerjem med trdnostjo in gostoto, opisanega v pojasnilih k tej točki.
(e) Končniki:
To so diskasto oblikovani sestavni deli s premerom od 75 do 400 mm, ki so posebej konstruirani ali izdelani za tesnjenje obeh koncev rotorskih cevi in zapirajo plinasti UF6 v rotorsko cev. V nekaterih primerih so izdelani tako, da obenem podpirajo rotorsko cev ali so sestavni del zgornjega ležaja ali pa nosijo vrteče se elemente motorja in spodnjega ležaja (končnika). Izdelani so iz materiala z visokim razmerjem med trdnostjo in gostoto, opisanega v pojasnilih k tej točki.
POJASNILA
Materiali, ki se uporabljajo za izdelavo vrtečih se sestavnih delov, so:
(a) martenzitno jeklo z natezno trdnostjo najmanj 2,05 x 109 N/m2,
(b) aluminijeve zlitine z natezno trdnostjo najmanj 0,46 x 109 N/m2,
(c) vlaknasti materiali, primerni za uporabo v kompozitnih strukturah s specifičnim modulom najmanj 12,3 x 106 m in s specifično natezno trdnostjo najmanj 0,3 x 106 m (specifični modul je razmerje med Youngovim modulom v N/m2 in specifično težo v N/m3; specifična natezna trdnost je razmerje med natezno trdnostjo v N/m2 in specifično težo v N/m3).
5.1.2 Statični sestavni deli
(a) Magnetni viseči ležaji:
To so posebej konstruirani ali izdelani ležaji, sestavljeni iz obročastega magneta, ki visi v ohišju z dušilnim sredstvom. Ohišje je izdelano iz materiala (glej pojasnilo k točki 5.2), ki je odporen proti koroziji z UF6. Magnet je spojen z osjo ali drugim magnetom, pritrjenim na zgornji končnik rotorske cevi, opisani v točki 5.1.1 (e). Lahko je obročaste oblike z razmerjem med zunanjim in notranjim premerom, manjšim ali enakim 1,6 : 1. Magnet ima lahko začetno permeabilnost 0,15 H/m (120.000 CGS enot) ali več ali remanenco vsaj 98,5% ali magnetno jakost večjo od 80 kJ/m3 (107 gauss-oerstedov). Poleg običajnih lastnosti materiala je pogoj, da odklon med magnetno in geometrijsko osjo ne presega zelo majhnih dopustnih odstopanj, manjših kot 0,1 mm ali da homogenost snovi magneta ustreza posebnim zahtevam.
(b) Ležaji in blažilniki:
To so posebej konstruirani ali izdelani skodeličasti ležaji, ki so pritrjeni na blažilnik. Polkroglasto konstruiran tečaj gredi ležaja je običajno izdelan iz kaljenega jekla in je pritrjen na spodnji končnik rotorske cevi, opisan v točki 5.1.1 (e). Gred je lahko uležajena s hidrodinamičnim ležajem. Skodelica ležaja ima obliko okrogle ploščice s polkroglasto vdolbino na eni strani. Opisani sestavni deli so pogosto dobavljeni ločeno od blažilnikov.
(c) Molekularne črpalke:
To so posebej konstruirani ali izdelani valji z notranje ustrezno mehansko obdelanimi spiralnimi utori in izvrtinami. Tipične dimenzije valja so: notranji premer 75 do 400 mm, debelina sten najmanj 10 mm. Dolžina je enaka premeru valja ali večja. Utori tipično pravokotnega preseka so globoki najmanj 2 mm.
(d) Statorji motorjev:
To so posebej konstruirani ali izdelani obročasti statorji za večfazne AC histerezne sinhronske motorje z veliko hitrostjo za delovanje v vakuumu v frekvenčnem območju 600 do 2000 Hz in z razponom moči od 50 do 1000 VA. Stator sestavlja večfazno navitje okoli laminiranega železnega jedra z majhnimi izgubami; debeline lamel so do 2 mm.
(e) Ohišja centrifug:
To so ohišja, ki so posebej konstruirana ali izdelana za vgradnjo cevastih rotorjev plinskih centrifug. Ohišje predstavlja tog valj z debelino stene do 30 mm in z zelo natančno obdelavo obeh koncev, za vgradnjo ležajev z eno ali več prirobnicami. Obdelana konca ohišja morata biti vzporedna in pravokotna na os valja; dovoljeno odstopanje ne sme presegati 0,05 stopinje. Ohišje ima lahko tudi obliko satovja, v katero se lahko vgradi več rotorskih cevi. Ohišja so izdelana iz materiala, ki je odporen proti koroziji z UF6, ali prevlečena z njim.
(f) Odvodne cevi:
To so posebej konstruirane ali izdelane cevi z notranjim premerom do 12 mm za odvajanje plina UF6 iz rotorske cevi in delujejo na principu Pitotove cevi (to je z odprtino, usmerjeno proti krožečemu plinu v rotorski cevi, na primer tako, da se upogne konec radialno usmerjene cevi) in jih je možno pritrditi na entralni sistem za odvajanje plina. Izdelane so ali iz materiala, ki je odporen proti koroziji z UF6, ali prevlečene z njim.
5.2 Posebej konstruirani ali izdelani pomožni sistemi, oprema in sestavni deli za obrate za izotopsko obogatitev s plinskimi centrifugami
UVODNA OPOMBA
Pomožni sistemi, oprema in sestavni deli za obrat za izotopsko obogatitev s plinskimi centrifugami so sistemi za dovajanje UF6 centrifugam, za medsebojno povezovanje posameznih centrifug, tako da tvorijo kaskade (ali stopnje) in tako omogočajo postopno vse višje stopnje obogatitve, in za odvajanje obogatenega in osiromašenega proizvoda UF6 iz centrifug skupaj z opremo za pogon centrifug ali za krmiljenje obrata.
Običajno se UF6 uparja iz trdnega agregatnega stanja z uporabo segretih avtoklavov in se dovaja v plinasti obliki centrifugam po kaskadnem razdelilnem cevovodu. Plinasti tokovi obogatenega in osiromašenega UF6 iz centrifug prav tako tečejo po kaskadnem zbirnem cevovodu v hladne pasti (ki delujejo pri približno 203 K (–70 °C)), kjer se kondenzirajo pred shranjevanjem v primerne vsebnike za prevoz in skladiščenje. Ker obrat za obogatitev sestoji iz več tisoč centrifug, razvrščenih v kaskade, znaša dolžina kaskadnega razdelilnega cevovoda nekaj kilometrov, z nekaj tisoč zvarov in z večkratnim ponavljanjem strukture. Oprema, sestavni deli in cevni sistemi se izdelujejo po zelo visokih merilih glede vakuuma in čistoče.
5.2.1 Napajalni sistemi in sistemi za odvajanje obogatenega in osiromašenega UF6
Ti sistemi so posebej konstruirani ali izdelani procesni sistemi, ki obsegajo:
napajalne avtoklave (ali postaje) za dovajanje UF6 v kaskade centrifug pri tlaku do 100 kPa in pretoku 1kg/h ali več;
desublimatorje (hladne pasti) za odvajanje UF6 iz kaskad centrifug pri tlaku do 3 kPa. Prenesti morajo ohlajanje do 203 K (–70 °C) in segrevanje do 343 K (70 °C);
postaje za odvajanje obogatenega in osiromašenega UF6 v vsebnike.
Ti sistemi, oprema in cevovodi so v celoti izdelani iz materiala, odpornega proti koroziji z UF6, ali obloženi s takim materialom (glej pojasnila k tej točki) in se izdelujejo po zelo visokih merilih glede vakuuma ali čistoče.
5.2.2 Razdelilni cevni sistem
To je posebej konstruiran ali izdelan cevni sistem in razdelilni cevni sistema za usmerjanje pretoka UF6 v kaskadah centrifug. Omrežje cevi v kaskadah centrifug je običajno sestavljeno iz trojnega razdelilnika. Vsaka centrifuga je priključena na vsak razdelilnik. Gre torej za večkratno ponavljanje oblik. Razdelilni cevni sistem je v celoti izdelan iz materiala, odpornega proti UF6 (glej pojasnilo k tej točki), po zelo visokih merilih glede vakuuma ali čistoče.
5.2.3 UF6 masni spektrometri in ionski izvori
To so posebej konstruirani ali izdelani magnetni ali štiripolni masni spektrometri za neposredno vzorčenje iz plinastega pretoka obogatenega ali osiromašenega UF6 in imajo vse naslednje značilnosti:
1. enotno ločljivost za enoto atomske mase nad 320;
2. ionske izvore, ki so izdelani iz nikroma, monela ali z njima prevlečeni ali pa so ponikljani;
3. ionske izvore za obstreljevanje z elektroni;
4. zbiralni sistem, ki je primeren za izotopske analize.
5.2.4 Frekvenčni pretvorniki
To so posebej konstruirane ali izdelane naprave za uravnavanje frekvence električnega toka v statorjih elektromotorjev, opredeljenih v točki 5.1.2 (d), ali deli, sestavni deli ali podsklopi takšnih frekvenčnih pretvornikov in imajo vse naslednje značilnosti:
1. večfazni izhod s frekvencami od 600 do 2000 Hz;
2. visoko stabilnost frekvence (frekvenčno krmiljenje boljše od 0,1%);
3. nizko harmonično popačenje (manj kot 2%) in
4. izkoristek nad 80%.
POJASNILO
Vse zgoraj naštete postavke prihajajo v neposreden stik z uplinjenim UF6 ali neposredno upravljajo centrifuge in pretok plina od centrifuge do centrifuge in od kaskade do kaskade.
Materiali, ki so odporni proti koroziji z UF6, so nerjavno jeklo, aluminij in aluminijeve zlitine ter nikelj in nikljeve zlitine z najmanj 60% niklja.
5.3 Posebej konstruirani ali izdelani sklopi in sestavni deli za izotopsko obogatitev s plinsko difuzijo
UVODNA OPOMBA
Pri metodi ločevanja uranovih izotopov s plinsko difuzijo je glavni tehnološki sklop posebna porozna pregrada za difuzijo plinov, toplotni izmenjevalnik za hlajenje plina (plin se segreva pri postopku stiskanja), zaporni ventili in regulacijski ventili ter cevovodi. Če se pri tehnologiji plinske difuzije uporablja uranov heksafluorid (UF6), morajo biti vse površine vse opreme, cevovodov in instrumentov (ki prihajajo v stik s plinom) izdelane iz materiala, ki ob stiku z UF6 ostane stabilen. V obratu za plinsko difuzijo je potrebnih več teh sklopov, tako da je lahko količina pomemben podatek o končni uporabi.
5.3.1 Pregrade za difuzijo plinov
(a) To so posebej konstruirani ali izdelani porozni filtri z velikostjo por od 100 do 1000 Ĺ (angstrem) debeline največ 5 mm, cevaste oblike s premerom največ 25 mm. Izdelani so iz kovinskega, polimernega ali keramičnega materiala, ki je odporen proti koroziji z UF6, in
(b) posebej pripravljene spojine ali praškaste snovi za izdelavo takšnih filtrov. Spojine ali praški vsebujejo nikelj ali zlitine z vsaj 60% niklja, aluminijevega oksida ali proti UF6 odporne popolnoma fluorirane ogljikovodikove polimere s čistostjo vsaj 99,9%, velikostjo delcev manjšo od 10 µm, visoko stopnjo enakomerne zrnatosti in so posebej pripravljeni za izdelavo pregrad za difuzijo plinov.
5.3.2 Ohišja difuzorjev
To so posebej konstruirane ali izdelane neprepustno zaprte valjaste posode s premerom nad 300 mm in dolžino najmanj 900 mm ali pravokotne posode primerljivih mer z vhodnim priključkom in z izhodnima priključkoma za vgradnjo pregrad za difuzijo plinov; vsi priključki imajo premer nad 50 mm. Ohišja difuzorjev so izdelana iz materiala, ki je odporen proti UF6, ali so prevlečena z njim in konstruirana za vodoravno ali navpično vgradnjo.
5.3.3 Kompresorji in puhala
To so posebej konstruirani ali izdelani aksialni, centrifugalni ali batni kompresorji oziroma puhala z zmogljivostjo najmanj 1 m3 UF6/min in izhodnim tlakom nekaj 100 kPa. Izdelani so za dolgotrajno delovanje v okolju z UF6 in imajo lahko pogonski elektromotor ustrezne moči, sem spadajo tudi posamezni sklopi kompresorjev in puhal. Kompresorji in puhala omogočajo tlačna razmerja med 2 : 1 in 6 : 1 ter so izdelani iz materiala, ki je odporen proti koroziji z UF6, ali so prevlečeni z njim.
5.3.4 Tesnila gredi
To so posebej konstruirana in izdelana vakuumska tesnila z dovodnim in odvodnim priključkom za tesnilno sredstvo, ki tesnijo gred rotorja puhala ali kompresorja, ki je povezana s pogonskim motorjem, tako da preprečujejo vdiranje zraka v notranjo komoro kompresorja ali puhala, ki je napolnjena z UF6. Takšna tesnila so običajno konstruirana tako, da v notranjost kompresorja ne vdre več kot 1000 cm3 zraka na minuto.
5.3.5 Toplotni izmenjevalniki za hlajenje UF6
To so posebej konstruirani ali izdelani toplotni izmenjevalniki iz materiala, ki je odporen proti UF6 (razen nerjavnega jekla) ali iz bakra ali katere koli kombinacije teh kovin ali so prevlečeni z njimi, za tlačno izgubo zaradi puščanja, manjšo od 10 Pa/h pri tlačni razliki 100 kPa.
5.4 Posebej konstruirani ali izdelani pomožni sistemi, oprema in sestavni deli za izotopsko obogatitev s plinsko difuzijo
UVODNA OPOMBA
Pomožni sistemi, oprema in sestavni deli za obrate za obogatitev s plinsko difuzijo so sistemi, potrebni za dovajanje UF6 v sklop za plinsko difuzijo, za povezovanje posameznih sklopov med seboj, tako da sestavljajo kaskade (ali stopnje) in tako omogočijo postopno vse višje stopnje obogatitve, in za odvajanje obogatenega in osiromašenega UF6 iz difuzijskih kaskad. Ker je za difuzijske kaskade značilna velika inercija, imata vsaka prekinitev njihovega delovanja in predvsem njihovo zaprtje resne posledice. Zato so v obratu za plinsko difuzijo pomembni dosledno in stalno vzdrževanje vakuuma v vseh tehnoloških sistemih, avtomatska zaščita pred nesrečami in natančna avtomatska regulacija toka plina. Zaradi vsega tega pa je treba obrat opremiti številnimi posebnimi merilnimi, regulacijskimi in krmilnimi sistemi.
Običajno se UF6 uparja iz valjev, vloženih v avtoklave, in se dovaja v plinasti obliki do vstopne točke po kaskadnem razdelilnem cevovodu. Obogateni in osiromašeni uplinjeni UF6, se od izstopnih točk vodi po kaskadnem razdelilnem cevovodu do hladnih pasti ali do kompresorskih postaj, kjer se utekočini in vodi v primerne vsebnike za prevoz ali skladiščenje. Ker obrat za obogatitev sestoji iz več tisoč centrifug, razvrščenih v kaskade, znaša dolžina kaskadnega razdelilnega cevovoda nekaj kilometrov, z nekaj tisoč zvarov in z večkratnim ponavljanjem strukture. Oprema, sestavni deli in cevni sistemi se izdelujejo po zelo visokih merilih glede vakuuma in čistoče.
5.4.1 Napajalni sistemi in sistemi za odvajanje obogatenega in osiromašenega UF6
To so posebej konstruirani ali izdelani procesni sistemi za obratovanje pri tlaku 300 kPa ali manj, ki obsegajo:
napajalne avtoklave (sisteme) za napajanje kaskad za plinsko difuzijo z UF6;
desublimatorje (ali hladne pasti) za odstranjevanje UF6 iz difuzijskih kaskad;
postaje za utekočinjenje, kjer se uplinjeni UF6 s stiskanjem in ohlajanjem utekočini;
postaje za shranjevanje obogatenega ali osiromašenega UF6 v vsebnike.
5.4.2 Razdelilni cevni sistem
To je posebej konstruiran ali izdelan cevni sistem in razdelilni cevni sistem za usmerjanje pretoka UF6 v kaskadah za plinsko difuzijo. Omrežje cevi je običajno sestavljeno iz sistema dvojnih razdelilnikov pri čemer je vsaka celica priključena na vsak razdelilnik.
5.4.3 Vakuumski sistemi
(a) To so posebej konstruirani ali izdelani veliki vakuumski zbiralniki, vakuumski razdelilniki in vakuumske črpalke s pretokom najmanj 5 m3/min ali več.
(b) Vakuumske črpalke, posebej konstruirane za obratovanje v okolju z UF6, izdelane iz aluminija, niklja ali nikljevih zlitin, ki vsebuje nad 60% niklja, ali prevlečene z njimi. Takšne črpalke so lahko rotacijske ali batne, lahko imajo fluoroogljikova tesnila in lahko vsebujejo posebne delovne fluide.
5.4.4 Posebni zaporni in regulacijski ventili
To so posebej konstruirani ali izdelani ročni ali avtomatski zaporni in regulacijski ventili z mehom za tlačno razbremenitev, izdelani iz materiala, ki je odporen proti korozijo z UF6, s premerom 40 do 1500 mm za vgradnjo v glavne in pomožne sisteme obratov za izotopsko obogatenje s plinsko difuzijo.
5.4.5 UF6 masni spektrometri in ionski izvori
To so posebej konstruirani ali izdelani magnetni ali štiripolni masni spektrometri za neposredno vzorčenje iz plinastega pretoka obogatenega ali osiromašenega UF6 in imajo vse naslednje značilnosti:
1. enotno ločljivost za enoto atomske mase nad 320;
2. ionske izvore, ki so izdelani iz nikroma, monela ali z njima prevlečeni ali pa so ponikljani;
3. ionske izvore za obstreljevanje z elektroni;
4. zbiralni sistem, ki je primeren za izotopske analize.
POJASNILO
Zgoraj naštete postavke prihajajo v neposreden stik z uplinjenim UF6 ali neposredno upravljajo tok znotraj kaskade. Vse površine, ki prihajajo v stik z uplinjenim UF6, so v celoti izdelane iz materiala, odpornega proti UF6, ali prevlečene z njim. Za namene točk, ki se nanašajo na postavke za plinsko difuzijo, so materiali, odporni proti koroziji z UF6, nerjavno jeklo, aluminij, aluminijeve zlitine, aluminijev oksid, nikelj ali zlitine z najmanj 60% niklja in popolnoma fluorinirani polimeri ogljikovodikov, odporni proti UF6.
5.5 Posebej konstruirani ali izdelani sistemi, oprema in sestavni deli za obrate za aerodinamično izotopsko obogatitev
UVODNA OPOMBA
V postopkih za aerodinamično bogatitev se zmes plinastega UF6 in lahkega plina (vodika ali helija) stisne in potem vodi skozi ločevalne elemente, v katerih se izotopi ločijo izotopov zaradi velikih centrifugalnih sil, ki nastajajo zaradi ukrivljene geometrije sten ločevalnih elementov. Uspešno sta bila razvita dva postopka te vrste: postopek z ločevalnimi šobami in postopek z vrtinčnimi cevmi. Pri obeh postopkih so glavni sestavni deli stopnje za ločevanje valjaste posode s posebnimi ločevalnimi elementi (šobe ali vrtinčne cevi), plinskimi kompresorji in toplotnimi izmenjevalniki za odvajanje toplote, ki nastaja pri stiskanju. V aerodinamičnem obratu je potrebnih več takih stopenj, tako da so lahko količine pomemben podatek o končni uporabi. Ker se pri aerodinamičnem postopku uporablja UF6, morajo biti površine vse opreme, vseh cevi in instrumentov (ki prihajajo v stik s plinom) izdelane iz materiala, ki ob stiku z UF6 ostane stabilen.
POJASNILO
Postavke, naštete v tej točki, prihajajo v neposreden stik z uplinjenim UF6 ali pa neposredno upravljajo tok znotraj kaskade. Vse površine, ki prihajajo v stik z uplinjenim UF6, so v celoti izdelane iz materiala, odpornega proti UF6, ali pa so zaščitene z njimi. Za namene točk, ki se nanašajo na postavke za aerodinamično obogatitev, so materiali odporni proti koroziji z UF6, nerjavno jeklo, aluminij, aluminijeve zlitine, aluminijev oksid, nikelj ali zlitine z najmanj 60% niklja in popolnoma fluorirani polimeri ogljikovodikov, odporni proti UF6.
5.5.1 Ločevalne šobe
To so posebej konstruirane ali izdelane ločevalne šobe in njihovi sklopi. Te šobe imajo ukrivljene kanale s polmerom ukrivljenosti, manjšim od 1 mm (običajno 0,05 do 0,1 mm), in so odporne proti koroziji z UF6. Pri izstopu iz šobe je ostro rezilo, ki razdeli izstopajoči tok plina na dva dela.
5.5.2 Vrtinčne cevi
To so posebej konstruirane ali izdelane valjaste ali stožčaste vrtinčne cevi, izdelane iz materiala, ki je odporen proti koroziji z UF6, ali zaščitene z njim, s premerom od 0,5 do 4 cm ter razmerjem med dolžino in premerom 20 : 1 ali manj, z eno ali več tangencialnimi vstopnimi odprtinami. Cevi imajo lahko na enem ali na obeh koncih šobaste dodatke.
POJASNILO
Dovajani plin vstopa v vrtinčno cev tangencialno na enem koncu ali prek vrtinčnih lopatic ali pa na številnih tangencialnih mestih vzdolž oboda cevi.
5.5.3 Kompresorji in puhala
To so posebej konstruirani ali izdelani aksialni centrifugalni ali batni kompresorji ali puhala, ki so izdelani iz materiala, ki je odporen proti koroziji z UF6, ali prevlečeni z njim, in imajo sesalno zmogljivost najmanj 2 m3/min nosilnega plina (vodik ali helij), ki vsebuje UF6.
POJASNILO
Ti kompresorji in plinska puhala imajo običajno razmerje pritiskov od 1,2 : 1 do 6 : 1.
5.5.4 Tesnila gredi
To so posebej konstruirana in izdelana tesnila z dovodnim in odvodnim priključkom za tesnilno sredstvo, ki tesnijo gred rotorja, ki povezuje puhalo ali kompresor in pogonski motor, tako da preprečujejo puščanje UF6 ali vdiranje zraka ali tesnilnega plina v notranjo komoro kompresorja ali puhala, ki je napolnjena z mešanico UF6 in nosilnega plina.
5.5.5 Toplotni izmenjevalniki za hlajenje plina
To so posebej konstruirani ali izdelani toplotni izmenjevalniki, ki si izdelani iz materiala, ki je odporen proti koroziji z UF6 ali zaščiteni z njim.
5.5.6 Ohišja ločevalnih elementov
To so posebej konstruirana ali izdelana ohišja, za vgradnjo vrtinčnih cevi ali ločevalnih šob in so iz materiala, ki je odporen proti koroziji z UF6, ali zaščitena z njim.
POJASNILO
Ta ohišja so lahko valjaste posode s premerom nad 300 mm in dolžino nad 900 mm ali pa pravokotne posode primerljivih mer in so lahko konstruirana za navpično ali vodoravno vgradnjo.
5.5.7 Napajalni sistemi in sistemi za odvajanje obogatenega in osiromašenega UF6
To so posebej konstruirani in izdelani procesni sistemi ali oprema za obrate za obogatitev in so izdelani iz materiala, ki je odporen proti koroziji z UF6, ali zaščiteni z njim, ki obsegajo:
(a) napajalne avtoklave, peči ali sisteme za napajanje procesa obogatitve z UF6;
(b) desublimatorje (ali hladne pasti) za odstranjevanje UF6 iz procesa obogatitve in za nadaljnjo obdelavo po segrevanju;
(c) postaje za pretvorbo v trdno stanje in utekočinjenje za odstranjevanje UF6 iz procesa obogatitve s stiskanjem in pretvorbo v tekoče ali trdno agregatno stanje;
(d) postaje za shranjevanje obogatenega ali osiromašenega UF6 v vsebnike.
5.5.8 Razdelilni cevni sistem
To je posebej konstruirani ali izdelani razdelilni cevni sistem za usmerjanje pretoka UF6 v aerodinamičnih kaskadah. Omrežje cevi je običajno sestavljeno iz sistema dvojnih razdelilnikov, pri čemer je vsaka stopnja ali skupina stopenj priključena na vsakega od razdelilnikov.
5.5.9 Vakuumski sistemi in črpalke
(a) To so posebej konstruirani ali izdelani vakuumski sistemi s sesalno zmogljivostjo najmanj 5 m3/min uro, sestavljeni iz vakuumskih zbiralnikov, vakuumskih razdelilnikov in vakuumskih črpalk, konstruirani za obratovanje v okolju z UF6.
(b) Vakuumske črpalke, posebej konstruirane ali izdelane za obratovanje v okolju z UF6, iz materiala, ki je odporen proti koroziji z UF6, ali zaščitene z njim. Takšne črpalke imajo lahko fluoroogljikova tesnila in posebne delovne fluide.
5.5.10 Posebni zaporni in regulacijski ventili
To so posebej konstruirani ali izdelani ročni ali avtomatski zaporni in regulacijski ventili z mehom za tlačno razbremenitev, izdelani iz materiala, ki je odporen proti koroziji z UF6, ali zaščiteni z njim, s premerom od 40 do 1500 mm za vgradnjo v glavne in pomožne sisteme obratov za aerodinamično izotopsko obogatitev.
5.5.11 UF6 masni spektrometri in ionski izvori
To so posebej konstruirani ali izdelani magnetni ali štiripolni masni spektrometri za neposredno vzorčenje iz plinastega pretoka obogatenega ali osiromašenega UF6 in imajo vse naslednje značilnosti:
1. enotno ločljivost za enoto atomske mase nad 320;
2. ionske izvore, ki so izdelani iz nikroma, monela ali z njima prevlečeni ali pa so ponikljani;
3. ionske izvore za obstreljevanje z elektroni;
4. zbiralni sistem, ki je primeren za izotopske analize.
5.5.12 Sistemi za ločevanje UF6 od nosilnega plina
To so posebej konstruirani ali izdelani procesni sistemi za ločevanje UF6 od nosilnega plina (vodik ali helij).
POJASNILO
Ti sistemi so konstruirani za zmanjšanje koncentracije UF6 v nosilnem plinu na manj kot 1 ppm in lahko vključujejo opremo, kot je:
(a) kriogeni toplotni izmenjevalniki in kriogeni ločevalniki za temperatur –120 0C ali manj ali
(b) kriogene enote za temperatur –120 0C ali manj ali
(c) ločevalne šobe ali vrtinčne cevi za ločevanje UF6 od nosilnega plina ali
(d) hladne pasti za UF6 za temperature –20 0C ali manj.
5.6 Posebej konstruirani ali izdelani sistemi, oprema in sestavni deli za uporabo v obratih za obogatitev s kemično ali ionsko izmenjavo
UVODNO POJASNILO
Neznatna razlika mas izotopov urana povzroča majhne spremembe v ravnotežjih kemičnih reakcij, kar je mogoče izkoristiti kot osnovo za ločevanje izotopov. Uspešno sta bila razvita dva postopka; kemična izmenjava med tekočinama in ionska izmenjava med trdno snovjo in tekočino.
Pri postopku kemične izmenjave med tekočinama prideta protitočno v stik tekoči fazi (vodna in organska), ki se med seboj ne mešata, kar povzroči kaskadni učinek več tisoč ločevalnih stopenj. Vodna faza je sestavljena iz uranovega klorida v raztopini solne kisline; organska faza je sestavljena iz ekstrahenta, ki vsebuje uranov klorid v organskem topilu. Kontaktorji, ki se uporabljajo v ločevalni kaskadi, so lahko izmenjevalne kolone med tekočinama (kot pulzirne kolone s perforiranimi ploščami) ali centrifugalni kontaktorji za kemično izmenjavo med tekočinama. Zaradi omogočanja povratnega toka v ločevalno kaskado mora na vsaki strani ločevalne kolone potekati kemična reakcija (oksidacija in redukcija). Pomembna zahteva pri konstruiranju je preprečiti onesnaženje procesnih tokov z določenimi kovinskimi ioni. Zato se uporabljajo plastične, s plastiko prevlečene (sem sodi tudi uporaba polimerov fluoroogljikov) in/ali s steklom prevlečene kolone in cevovodi.
Pri postopku ionske izmenjave med trdno snovjo in tekočino se doseže obogatitev z adsorpcijo in desorpcijo urana na posebni visoko aktivni smoli za ionsko izmenjavo oz. adsorbentu. Raztopina urana v solni kislini in drugih kemičnih reagentih se vodi skozi valjaste kolone za obogatitev, ki so napolnjene s sloji adsorbenta. Da teče postopek neprekinjeno, je potreben sistem za povratni tok za sproščanje urana iz adsorbenta nazaj v tekočo fazo, tako da je mogoče ločeno zbirati obogateni in osiromašeni uran. To se izvede z uporabo primernih kemičnih redukcijskih in oksidacijskih sredstev, ki se popolnoma regenerirajo v ločenih zunanjih krožnih tokovih in jih je mogoče deloma regenerirati znotraj samih kolon za ločevanje izotopov. Prisotnost vročih koncentriranih raztopin solne kisline v postopku zahteva, da je oprema izdelana iz posebnega materiala, ki je odporen proti koroziji, ali zaščitena z njim.
5.6.1 Kolone za izmenjavo med tekočinama (kemična izmenjava)
Protitočne kolone za kemično izmenjavo med tekočinama z mehanskim izvorom energije (pulzirne kolone s perforiranimi ploščami, kolone s povratnimi ploščami in kolone z notanjimi turbinskimi mešali) so posebej konstruirane ali izdelane za izotopsko obogatitev urana s kemično izmenjavo. Zaradi odpornosti proti koroziji s koncentriranimi raztopinami solne kisline so te kolone ali njihovi notranji deli izdelani iz primernega plastičnega materiala (kot so polimeri fluoroogljika) ali iz stekla ali zaščiteni z njim. Kolone so konstruirane tako, da se raztopine zadržujejo v njih kratek čas (do 30 sekund).
5.6.2 Centrifugalni kontaktorji za izmenjavo med tekočinama (kemična izmenjava)
To so posebej konstruirani ali izdelani kontaktorji za obogatitev urana s kemično izmenjavo. Ti kontaktorji z vrtenjem povzročijo disperzijo organske in vodne komponente, nato pa ju ponovno ločijo s centrifugiranjem. Zaradi odpornosti proti koroziji s koncentriranimi raztopinami solne kisline so kontaktorji ali njihovi notranji deli izdelani iz primernega plastičnega materiala (kot so polimeri fluoroogljika) ali zaščiteni z njim ali obdani s steklom. Centrifugalni kontaktorji so konstruirani tako, da se raztopine zadržujejo v njih kratek čas (do 30 sekund).
5.6.3 Sistemi in oprema za redukcijo urana (kemična izmenjava)
(a) To so posebej konstruirane ali izdelane celice za elektrokemično redukcijo urana iz enega v drugo valentno stanje pri postopku izotopske obogatitve urana s kemično izmenjavo. Deli celic, ki so v stiku s procesno raztopino, morajo biti izdelane iz materiala, odpornega proti koroziji s koncentriranimi raztopinami solne kisline.
POJASNILO
Katodni prekat celice mora biti konstruiran tako, da se prepreči ponovna oksidacija urana v višje valentno stanje. Da uran ostane v katodnem prekatu, ima lahko celica neprepustno diafragemsko membrano, izdelano iz posebnega materiala za izmenjavo kationov. Katoda je iz primernega trdnega prevodnika, kot je grafit.
(b) To so posebej konstruirani ali izdelani sistemi na koncu kaskade za odvzem U4+ iz pretoka organske komponente, uravnavanje koncentracije kisline in napajanje celic za elektrokemično redukcijo.
POJASNILO
Ti sistemi so sestavljeni iz opreme za solventno ekstrakcijo za izločanje U4+ iz organske komponente v vodno raztopino, opreme za izparevanje in/ali druge opreme za uravnavanje in nadziranje pH raztopine, črpalk ali drugih naprav za napajanje celic za elektrokemično redukcijo. Pomembna zahteva pri konstruiranju je preprečiti onesnaženje vodnega toka z določenimi kovinskimi ioni. Zato dele sistema, ki so v stiku s procesnim tokom, sestavlja oprema, izdelana iz primernega materiala (kot so npr. steklo, polimeri fluoroogljika, polifenilsulfat, polietersulfon in s smolo impregnirani grafit) ali zaščitena z njimi.
5.6.4 Sistemi za pripravo vhodnih komponent (kemična izmenjava)
To so posebej konstruirani ali izdelani sistemi za proizvodnjo vhodne raztopine uranovega klorida visoke čistosti za naprave, ki se uporabljajo pri izotopskem ločevanju urana s postopkom kemične izmenjave.
POJASNILO
Ti sistemi so sestavljeni iz opreme za raztapljanje, solventno ekstrakcijo in/ali ionsko izmenjavo za čiščenje ter iz elektrolitskih celic za redukcijo urana U6+ali U4+ v U3+. Pri tem nastane raztopina uranovega klorida, ki ima le nekaj ppm kovinskih nečistoč, kot so krom, železo, vanadij, molibden in drugi dvovalentni ali večvalentni kationi. Konstrukcijski materiali delov sistema za pridobivanje visoko čistega U3+so steklo, polimeri fluoroogljika, polifenilsulfat, polietersulfon ter s plastiko prevlečeni in s smolo impregnirani grafiti.
5.6.5 Sistemi za oksidacijo urana (kemična izmenjava)
To so posebej konstruirani ali izdelani sistemi za oksidacijo urana iz U3+ v U4+ in njegovo vračanje v kaskade za izotopsko ločevanje urana pri procesu obogatitve s kemično izmenjavo.
POJASNILO
Ti sistemi lahko vključujejo opremo, kot je:
(a) oprema za vzpostavljanje stika med klorom in kisikom z vodnim iztokom iz opreme za ločevanje izotopov in za ekstrahiranje tako dobljenega U4+ v organski tok, ki se po desorpciji vrača s konca kaskade;
(b) oprema, ki ločuje vodo od solne kisline, tako da je mogoče vodo in koncentrirano solno kislino ponovno vrniti v postopek na primernih mestih.
5.6.6 Visoko aktivne smole in adsorbenti za ionsko izmenjavo (ionska izmenjava)
Visoko aktivne smole in adsorbenti za ionsko izmenjavo so posebej načrtovani ali izdelani za obogatitev urana z ionsko izmenjavo, vključno s poroznimi makromrežastimi smolami in/ali zrnatimi strukturami, pri katerih so aktivne skupine za kemično izmenjavo omejene na prevleko na površini neaktivne porozne nosilne strukture, in drugimi kompozitnimi strukturami v kakršni koli primerni obliki, vključno z delci ali vlakni. Te smole in adsorbenti za ionsko izmenjavo s premerom 0,2 mm ali manj morajo biti kemično odporni proti koncentrirani solni kislini in njenim raztopinam ter fizično dovolj trdni, da ne razpadejo v kolonah za ionsko izmenjavo. Smole in adsorbenti so posebej pripravljeni tako, da omogočajo zelo hitro izmenjavo izotopov urana (razpolovni čas hitrosti izmenjave manj kot 10 sekund) in morajo prenesti delovne temperature od 100 do 200 oC.
5.6.7 Kolone za ionsko izmenjavo (ionska izmenjava)
To so valjaste kolone s premerom nad 1000 mm za namestitev slojev smol in adsorbentov za ionsko izmenjavo in so posebej konstruirane ali izdelane za obogatitev urana z ionsko izmenjavo. Kolone so izdelane iz materiala, odpornega proti koroziji s koncentrirano solno kislino (kot je titan ali fluoroogljikova plastika), ali zaščitene z njim za obratovanje pri temperaturah od 100 do 200 oC in tlakih nad 0,7 MPa.
5.6.8 Povratni sistemi za ionsko izmenjavo (ionska izmenjava)
(a) To so posebej konstruirani ali izdelani sistemi za kemično ali elektrokemično redukcijo za regeneriranje kemičnega redukcijskega sredstva, ki se uporablja v kaskadah za obogatitev urana z ionsko izmenjavo.
(b) To so posebej konstruirani ali izdelani sistemi za kemično ali elektrokemično oksidacijo za regeneriranje kemičnega redukcijskega sredstva, ki se uporablja v kaskadah za obogatitev urana z ionsko izmenjavo.
POJASNILO
Pri postopku obogatitve z ionsko izmenjavo se lahko kot reducirni kation uporabi npr. trivalentni titan (Ti3+); v tem primeru redukcijski sistem regenerira Ti3+ z redukcijo Ti4+.
Pri postopku se lahko uporabi npr. trivalentno železo (Fe3+) kot oksidant; v tem primeru oksidacijski sistem regenerira Fe3+z oksidacijo Fe2+.
5.7 Posebej konstruirani ali izdelani sistemi, oprema in sestavni deli za uporabo v obratih za obogatitev urana z lasersko tehnologijo
UVODNA OPOMBA
Sodobni sistemi za postopke obogatitve z laserji se delijo v dve kategoriji, in sicer sisteme, pri katerih je procesni medij atomska uranova para, in sisteme, pri katerih je procesni medij para uranove spojine. Običajno se za te sisteme uporabljajo naslednji izrazi: prva kategorija – lasersko ločevanje izotopov v atomski pari (AVLIS ali SILVA); druga kategorija – lasersko ločevanje izotopov v molekularni pari (MLIS ali MOLIS) in kemična reakcija z laserskim aktiviranjem, odvisnim od izotopa (CRISLA). Sistemi, oprema in sestavni deli za obrate za lasersko obogatitev vsebujejo: (a) naprave za dovajanje pare kovinskega urana (za selektivno fotoionizacijo) ali naprave za dovajanje pare uranove spojine (za fotodisociacijo ali kemično aktiviranje); (b) naprave za zbiranje obogatenega in osiromašenega kovinskega urana pri prvem sistemu ter naprave za zbiranje disociranih ali kemično reagiranih spojin kot obogateni uran in nespremenjeni material kot osiromašeni uran pri drugem sistemu; (c) procesne laserske sisteme za selektivno vzbujanje izotopa urana-235; in (d) opremo za pripravo dovajanega materiala in pretvorbo obogatenega urana. Zaradi zahtevnosti spektroskopije uranovih atomov in spojin je lahko vključena katera koli od številnih laserskih tehnologij, ki je na razpolago.
POJASNILO
Večina postavk, naštetih v tem poglavju, prihajajo v neposreden stik s kovinskim uranom v plinasti ali staljeni obliki ali s procesnim plinom, sestavljenim iz UF6 ali zmesi UF6 in drugih plinov. Vse površine, ki prihajajo v stik z uranom ali UF6, so v celoti izdelane iz materiala, ki je odporen proti koroziji, ali prevlečene z njim. Za namene točke, ki se nanaša na postavke za obogatitev z lasersko tehnologijo, so materiali, ki so odporni proti koroziji z uparjenim ali tekočim kovinskim uranom ali uranovimi zlitinami, z itrijem prevlečen grafit in tantal; materiali, odporni proti koroziji z UF6, pa baker, nerjavno jeklo, aluminij, aluminijeve zlitine, nikelj ali zlitine z najmanj 60% niklja in popolnoma fluorirani polimeri ogljikovodika, odporni proti UF6.
5.7.1 Sistemi za uparjanje urana (AVLIS)
To so posebej konstruirani ali izdelani sistemi za uparjanje urana, sestavljeni iz pasovnih ali skenirnih elektronskih topov, ki oddajajo elektronske curke z močjo, ki na tarči znaša več kot 2,5 kW/cm.
5.7.2 Sistemi za ravnanje s staljenim kovinskim uranom (AVLIS)
To so posebej konstruirani ali izdelani sistemi za ravnanje s talinami kovinskga urana ali njegovih zlitin, sestavljeni iz talilnih loncev in opreme za njihovo hlajenje.
POJASNILO
Talilni lonci in drugi deli tega sistema, ki pridejo v stik s staljenim uranom ali uranovimi zlitinami, so izdelani iz materiala, ki je primerno odporen proti koroziji in visokim temperaturam, ali pa so zaščiteni s takim materialom. Primerni materiali so tantal, grafit, s prevleko iz itrija, grafit s prevleko iz oksidov redkih zemelj ali njihove zmesi.
5.7.3 Sistem za zbiranje obogatenega in osiromašenega kovinskega urana (AVLIS)
To so posebej konstruirani ali izdelani zbiralniki za zbiranje obogatenega in osiromašenega urana v talini ali v trdni obliki.
POJASNILO
Sestavni deli za te sklope so izdelani iz materiala, ki je odporen proti vročini in koroziji z uparjenim ali tekočim kovinskim uranom, ali pa so zaščiteni z njimi (kot je grafit s prevleko iz itrija ali tantal) in lahko obsegajo cevi, ventile, vezne kose, “žlebove”, napajalne kanale, toplotne izmenjevalnike in kolektorske plošče za magnetne, elektrostatične ali druge metode ločevanja.
5.7.4 Ohišja ločevalnika (AVLIS)
To so posebej konstruirane ali izdelane valjaste ali pravokotne posode za namestitev izvora uparjenega kovinskega urana, elektronskega topa in sistema za zbiranje obogatenega in osiromašenega urana.
POJASNILO
Ta ohišja imajo večje število vhodov za napajanje z elektriko in vodo, odprtine za laserski curek, priključke za vakuumsko črpalko ter opremo za diagnostiko in nadzor instrumentov. Opremljena so s pripravami za odpiranje in zapiranje, kar omogoča obnavljanje notranjih sestavnih delov.
5.7.5 Nadzvočne ekspanzijske šobe (MLIS)
To so posebej konstruirane ali izdelane nadzvočne ekspanzijske šobe za hlajenje mešanice UF6 in nosilnega plina do temperature 150 K ali manj ter so odporne proti koroziji z UF6.
5.7.6 Zbiralniki za uranov pentafluorid (MLIS)
To so posebej konstruirani ali izdelani zbiralniki za zbiranje uranovega pentafluorida (UF5)v trdnem agregatnem stanju, ki je sestavljen iz filtra, udarnega ali ciklonskega zbiralnika ali iz kombinacije obeh in so odporni proti koroziji z UF5 in UF6.
5.7.7 Kompresorji za mešanico UF6 in nosilnega plina (MLIS)
To so posebej konstruirani ali izdelani kompresorji za mešanico UF6 in nosilnega plina, za dolgotrajno obratovanje v okolju z UF6. Sestavni deli in komponente kompresorja, ki prihajajo v stik s procesnim plinom so izdelani iz materiala, ki je odporen proti koroziji z UF6, ali prevlečeni z njim.
5.7.8 Tesnila gredi (MLIS)
To so posebej konstruirana ali izdelana tesnila gredi z dovodnim in odvodnim priključkom za tesnilno sredstvo, ki tesnijo gred rotorja, ki povezuje kompresor in pogonski motor, tako da preprečujejo puščanje procesnega plina ali vdiranje zraka ali tesnilnega plina v notranjo komoro kompresorja, napolnjeno z mešanico UF6 in nosilnega plina.
5.7.9 Sistemi za fluoriranje (MLIS)
To so posebej konstruirani ali izdelani sistemi za fluoriranje trdnega UF5 v plinasti UF6.
POJASNILO
Ti sistemi so konstruirani za fluoriranje zbranega praškastega UF5 v UF6, ki se zbira v vsebnike za obogateni UF6 ali se dovaja v enote MLIS, kjer se dodatno obogati. Po prvi metodi reakcija fluoriranja lahko poteka v sistemu za ločevanje izotopov, kjer pride do reakcije in se pridobi obogateni UF6 neposredno po izstopu iz zbiralnikov. Po drugi metodi pa se lahko praškasti UF5 odstrani in vodi iz zbiralnika obogatenega UF5 v primerno reakcijsko posodo (npr. reaktor s fluidiziranim slojem, vijačni reaktor ali plamenski stolp) za fluoriranje. Po obeh metodah se uporablja oprema za shranjevanje in prenos fluora (ali kakega drugega primernega sredstva za fluoriranje) in za zbiranje in prenos UF6.
5.7.10 UF6 masni spektrometri in ionski izvori
To so posebej konstruirani ali izdelani magnetni ali štiripolni masni spektrometri za neposredno vzorčenje iz plinastega pretoka obogatenega ali osiromašenega UF6 in imajo vse naslednje značilnosti:
1. enotno ločljivost za enoto atomske mase nad 320;
2. ionske izvore, ki so izdelani iz nikroma, monela ali z njima prevlečeni ali pa so ponikljani;
3. ionske izvore za obstreljevanje z elektroni;
4. zbiralni sistem, ki je primeren za izotopske analize.
5.7.11Napajalni sistemi in sistemi za odvajanje osiromašenega in obogatenega UF6 (MLIS)
To so posebej konstruirani ali izdelani procesni sistemi ali oprema za obrate za obogatitev, izdelani iz materiala, ki je odporen proti koroziji z UF6, ali zaščiteni z njim, ki obsegajo:
(a) napajalne avtoklave, peči ali sisteme za napajanje procesa obogatitve z UF6;
(b) desublimatorje (ali hladne pasti) za odstranjevanje UF6 iz procesa obogatitve in za nadaljnjo obdelavo po segrevanju;
(c) postaje za pretvorbo v trdno stanje in utekočinjenje za odstranjevanje UF6 iz procesa obogatitve s stiskanjem in pretvorbo v tekoče ali trdno agregatno stanje;
(d) postaje za shranjevanje obogatenega ali osiromašenega UF6 v vsebnike.
5.7.12Sistemi za ločevanje UF6 od nosilnega plina (MLIS)
To so posebej konstruirani ali izdelani sistemi za ločevanje UF6 od nosilnega plina. Nosilni plin je lahko dušik, argon ali drug plin.
POJASNILO
Ti sistemi lahko vsebujejo opremo, kot je:
(a) kriogeni toplotni izmenjevaniki ali kriogeni ločevalniki, za temperature –120 °C ali manj ali
(b) kriogene hladilne enote, za temperature –120 °C ali manj ali
(c) hladne pasti za UF6, za temperature – 20 °C ali manj.
5.7.13 Laserski sistemi (AVLIS, MLIS in CRISLA)
To so posebej konstruirani ali izdelani laserji ali laserski sistemi za ločevanje uranovih izotopov.
POJASNILO
Laserski sistem za postopek AVLIS je običajno sestavljen iz dveh laserjev: laserja z bakrovo paro in laserja z barvilom kot aktivnim sredstvom. Laserski sistem za MLIS je običajno sestavljen iz CO2 laserja ali laserja s plinskimi molekulami, obstojnimi samo v vzbujenem stanju (excimer), in optičnih celic za večkratni prehod z vrtljivimi zrcali na obeh koncih. Pri laserjih ali laserskih sistemih je za oba postopka potreben stabilizator frekvenčnega spektra, ki omogoča delovanje v daljšem časovnem obdobju.
5.8 Posebej konstruirani ali izdelani sistemi, oprema in sestavni deli za uporabo v obratih za obogatitev s plazemskim ločevanjem
UVODNA OPOMBA
Pri postopku ločevanja s plazmo gre plazma uranovih ionov skozi električno polje, uglašeno na resonančno frekvenco U235 ionov, tako da selektivno absorbirajo energijo in povečujejo premer svojih spiralno oblikovanih orbit. Ioni na tirnicah velikega premera se prestrežejo in izkoristijo za pridobivanje obogatenega U235. Plazma, ki nastane z ionizacijo uranove pare, se zadrži v vakuumski komori z magnetnim poljem visoke jakosti, ki ga ustvarja supraprevodni magnet. Glavni tehnološki sistemi postopka so sistem za ustvarjanje uranove plazme, ločevalni modul s supraprevodnim magnetom in sistemi za odstranjevanje kovine, nameščeni za zbiranje obogatenega in osiromašenega urana.
5.8.1 Izvori mikrovalov in antene
To so posebej konstruirani ali izdelani generatorji mikrovalov in antene za ustvarjanje ali pospeševanje ionov s frekvenco nad 30 GHz in s srednjo izhodno močjo za proizvodnjo ionov nad 50 kW.
5.8.2 Tuljave za vzbujanje ionov
To so posebej konstruirane ali izdelane radiofrekvenčne tuljave za vzbujanje ionov pri frekvencah nad 100 kHz, ki delujejo pri srednji moči nad 40 kW.
5.8.3 Sistemi za generiranje uranove plazme
To so posebej konstruirani ali izdelani sistemi za generiranje uranove plazme, ki jih lahko sestavljajo močni pasovni ali skenirni elektronski topovi z močjo na tarči nad 2,5 kW/cm.
5.8.4 Sistemi za ravnanje s staljenim kovinskim uranom
To so posebej konstruirani ali izdelani sistemi za ravnanje s talinami kovinskega urana ali njegovih zlitin, sestavljeni iz talilnih loncev in opreme za njihovo hlajenje.
POJASNILO
Talilni lonci in drugi deli tega sistema, ki pridejo v stik s staljenim uranom ali uranovimi zlitinami, so izdelani iz materiala, ki je primerno odporen proti koroziji in visokim temperaturam, ali pa so zaščiteni s takim materialom. Primerni materiali so tantal, grafit, s prevleko iz itrija, grafit s prevleko iz oksidov redkih zemelj ali njihove zmesi.
5.8.5 Sistem za zbiranje obogatenega in osiromašenega kovinskega urana
To so posebej konstruirani ali izdelani zbiralniki za zbiranje obogatenega in osiromašenega kovinskega urana v trdni obliki. Izdelani so iz materiala, ki je odporen proti visokim temperaturam in koroziji s parami kovinskega urana, kot je grafit s prevleko iz itrija ali tantal, ali zaščiteni z njim.
5.8.6 Ohišja ločevalnika
To so posebej konstruirane ali izdelane valjaste posode za uporabo v obratih za obogatitev urana s plazemskim ločevanjem, v katere se namestijo izvor plazme, radiofrekvenčna tuljava in zbiralniki obogatenega in osiromašenega urana.
POJASNILO
Ta ohišja imajo več vhodov za napajanje z elektriko, priključke za difuzijsko črpalko ter opremo za diagnostiko in nadzor instrumentov. Opremljena so s pripravami za odpiranje in zapiranje, kar omogoča obnavljanje notranjih sestavnih delov, in so izdelana iz primernega nemagnetnega materiala, kot je nerjavno jeklo.
5.9 Posebej konstruirani ali izdelani sistemi, oprema in sestavni deli za uporabo v obratih za elektromagnetno obogatitev
UVODNA OPOMBA
Pri elektromagnetnem postopku se ioni kovinskega urana, ki nastanejo z ionizacijo soli dovajanega materiala (običajno UCl4), pospešijo in vodijo skozi magnetno polje, ki povzroči, da gredo ioni različnih izotopov po različnih poteh. Glavni sestavni deli elektromagnetnega ločevalnika izotopov so: magnetno polje za odklanjanje in ločevanje izotopov v ionskem curku, ionski vir s pospeševalnim sistemom in zbiralni sistem za ločene ione. Pomožni sistemi za ta postopek so: napajalni sistem za magnet, visokonapetostni napajalni sistem za ionski vir, vakuumski sistem in obsežni kemični sistemi za ravnanje s proizvodom ter čiščenje in recikliranje sestavnih delov.
5.9.1 Elektromagnetni ločevalniki izotopov
To so posebej konstruirani ali izdelani elektromagnetni ločevalniki izotopov, oprema in sestavni deli za ločevanje uranovih izotopov in obsegajo:
(a) ionske izvore
To so posebej konstruirani ali izdelani enojni ali večkratni izvori uranovih ionov, ki so sestavljeni iz izvora uranove pare, ionizatorja in pospeševalnika ionskega curka. Izdelani so iz primernega materiala, kot je grafit, nerjavno jeklo ali baker, ter so sposobni zagotavljati ionski curek s skupno jakostjo najmanj 50 mA.
(b) zbiralnike ionov
To so posebej konstruirane ali izdelane zbiralne plošče z dvema ali več zarezami in žepi za zbiranje ionskih curkov obogatenega in osiromašenega urana in so izdelane iz primernega materiala, kot je grafit ali nerjavno jeklo.
(c) vakuumska ohišja
To so posebej konstruirana ali izdelana vakuumska ohišja za vgradnjo elektromagnetnih ločevalnikov urana, izdelana iz primernega nemagnetnega materiala, kot je nerjavno jeklo, in konstruirana za obratovanje pri tlaku 0,1 Pa ali manj.
POJASNILO
Ohišja so posebej konstruirana za vgradnjo ionskih virov, zbiralnih plošč in vložkov za vhodno hlajenje s priključki za difuzijsko črpalko, z odprtino in pokrovom za odstranjevanje in ponovno vgradnjo teh sestavnih delov.
(d) magnetne pole
To so posebej konstruirani ali izdelani magnetni poli s premerom nad 2 m za vzdrževanje stalnega magnetnega polja znotraj elektromagnetnega ločevalnika izotopov in za prenos magnetnega polja med sosednjimi ločevalniki.
5.9.2 Viri visoke napetosti
To so posebej konstruirani ali izdelani viri visoke napetosti z vsemi naslednjimi značilnostmi: sposobnostjo neprekinjenega delovanja, izhodne napetosti najmanj 20.000 V, jakosti izhodnega toka najmanj 1 A in regulacije napetosti, boljše kot 0,01% v časovnem obdobju osmih ur.
5.9.3 Viri energije za magnete
To so posebej konstruirani ali izdelani viri enosmernega toka za elektromagnete z vsemi naslednjimi značilnostmi: sposobnostjo neprekinjenega proizvajanja izhodnega toka z jakostjo najmanj 500 A pri napetostih najmanj 100 V in regulacije napetosti ali toka, boljše kot 0,01% v časovnem obdobju osmih ur.
6 Obrati za pridobivanje težke vode, devterija in devterijevih spojin ter posebej konstruirana ali izdelana oprema v ta namen
UVODNA OPOMBA
Težka voda se lahko pridobiva z več različnimi postopki. Komercialno uspešna pa sta se izkazala izmenjevalni postopek voda – vodikov sulfid (postopek GS) in izmenjevalni postopek amoniak – vodik.
Postopek GS temelji na izmenjavi vodika in devterija med vodo in vodikovim sulfidom znotraj zaporedja stolpov, ki delujejo tako, da je njihov zgornji del hladen in spodnji del vroč. Voda teče po stolpih navzdol, plinasti vodikov sulfid pa kroži od dna proti vrhu stolpov. Niz perforiranih plošč pospešuje medsebojno mešanje plina in vode. Devterij pri nizkih temperaturah prehaja v vodo, pri visokih pa v vodikov sulfid. Plin ali voda, obogatena z devterijem, se odvzema iz stolpov prve stopnje na stiku vročih in hladnih delov, postopek pa se potem ponavlja v stolpih nadaljnjih stopenj. Proizvod zadnje stopnje, voda, obogatena do 30% z devterijem, se pošlje v destilacijsko enoto, v kateri se pridobi težka voda reaktorske kakovosti; t. j. 99,75 odstotni devterijev oksid.
Izmenjevalni postopek amoniak – vodik lahko izloči devterij iz sinteznega plina ob stiku s tekočim amoniakom ob prisotnosti katalizatorja. Sintezni plin se dovaja v izmenjevalne stolpe in v pretvornik amoniaka. V notranjosti stolpov teče plin od dna proti vrhu, tekoči amoniak pa teče od vrha proti dnu. Devterij se izloči iz vodika v sinteznem plinu in se koncentrira v amoniaku. Amoniak potem teče v razgrajevalnik amoniaka na dnu stolpa, plin pa teče v pretvornik amoniaka na vrhu. Nadaljnja obogatitev poteka v nadaljnjih stopnjah, težka voda reaktorske kakovosti pa se pridobi s končno destilacijo. Sintezni plin se lahko dovaja iz obrata za pridobivanje amoniaka, tega pa je mogoče zgraditi v sklopu obrata za težko vodo po izmenjevalnem postopku amoniak – vodik. Za izmenjevalni postopek amoniak – vodik se kot vir devterija lahko uporabi tudi navadna voda.
Veliko ključnih postavk opreme obratov za pridobivanje težke vode z izmenjevalnim postopkom GS ali pa izmenjevalnim postopkom amoniak –vodik je skupnih večjemu številu segmentov kemične in naftne industrije. To še posebej velja za majhne obrate, v katerih se uporablja postopek GS. Le malo postavk te opreme je na voljo v redni prodaji. Postopek GS in postopek amoniak – vodik zahtevata ravnanje z večjimi količinami vnetljivih, korozivnih in strupenih tekočin pri visokem tlaku. V skladu s tem je treba pri izdelavi načrtovalnih in obratovalnih standardov za obrate in opremo, namenjeno tem postopkom, posvetiti veliko pozornost izbiri materialov in specifikacijam, da se tako zagotovi dolga življenjska doba z visoko varnostjo in zanesljivostjo. Izbira je predvsem odvisna od gospodarskih dejavnikov in potreb. Večina postavk te opreme se zato izdela v skladu z zahtevami kupca.
Treba je tudi pripomniti, da je mogoče tako v izmenjevalnem postopku GS kakor tudi v izmenjevalnem postopku amoniak – vodik postavke opreme, ki vsaka zase sicer ni posebej konstruirana ali izdelana za pridobivanje težke vode, medsebojno povezati v sisteme, ki so posebej konstruirani ali izdelani za pridobivanje težke vode. Primeri takšnih sistemov so: katalitski sistem, ki se uporablja v izmenjevalnem postopku amoniak – vodik, in sistemi za destilacijo vode, ki se pri obeh postopkih uporabljajo za končno koncentriranje težke vode do reaktorske kakovosti.
Posebej konstruirane ali izdelane postavke opreme za pridobivanje težke vode z izmenjevalnim postopkom voda – vodikov sulfid ali izmenjevalnim postopkom amoniak – vodik so:
6.1 Stolpi za izmenjavo voda – vodikov sulfid
To so izmenjevalni stolpi, ki so izdelani iz kakovostnega ogljikovega jekla (kot je ASTM A516), s premerom od 6 do 9 m za obratovanje pri tlakih, ki so večji ali enaki kot 2 MPa, in z dopustno korozijo 6 mm ali več. Stolpi so posebej konstruirani ali izdelani za pridobivanje težke vode z izmenjevalnim postopkom voda – vodikov sulfid.
6.2 Puhala in kompresorji
To so nizkotlačna enostopenjska centrifugalna puhala ali kompresorji (t. j. 0,2 MPa) za kroženje vodikovega sulfida (t. j. plina z več kot 70% H2S), posebej konstruirani ali izdelani za pridobivanje težke vode z izmenjevalnim postopkom voda – vodikov sulfid. Imajo pretočno zmogljivost vsaj 56 m3/sekundo pri obratovalnem tlaku vsaj 1,8 MPa ter tesnila, primerna za obratovanje v okolju z mokrim H2S.
6.3 Izmenjevalni stolpi za sistem amoniak – vodik
To so izmenjevalni stolpi, visoki vsaj 35 m, s premerom od 1,5 do 2,5 m za obratovanje pri tlakih nad 15 MPa in so posebej konstruirani ali izdelani za pridobivanje težke vode z izmenjevalnim postopkom amoniak – vodik. Ti stolpi imajo vsaj eno aksialno odprtino s prirobnico z enakim premerom kot valj skozi katero se lahko vstavijo ali odstranijo notranji deli stolpa.
6.4 Notranji deli stolpov in stopenjske črpalke
To so posebej konstruirani ali izdelani notranji deli stolpov in stopenjske črpalke za pridobivanje težke vode z izmenjevalnim postopkom amoniak – vodik. Notranji deli stolpov so posebej konstruirani stopenjski kontaktorji, ki omogočajo neposreden stik med plinom in tekočino. Stopenjske črpalke so posebej konstruirane potopne črpalke za kroženje amoniaka znotraj kontaktnih stopenj v stolpih.
6.5 Razgrajevalniki amoniaka
To so posebej konstruirane ali izdelane naprave z delovnim tlakom vsaj 3 MPa za pridobivanje težke vode z izmenjavalnim postopkom amoniak – vodik.
6.6 Infrardeči absorpcijski analizatorji
Infrardeči absorpcijski analizatorji za neposredno analizo razmerja med vodikom in devterijem pri koncentracijah devterija najmanj 90%.
6.7 Katalitski gorilniki
To so posebej konstruirani ali izdelani katalitski gorilniki za pretvorbo obogatenega devterija v težko vodo, ki se uporabljajo v obratih za pridobivanje težke vode z izmenjevalnim postopkom amoniak – vodik.
7 Obrati za pretvorbo urana in oprema, ki je posebej konstruirana ali izdelana v ta namen
UVODNA OPOMBA
V obratih in sistemih za pretvorbo urana se lahko izvede ena ali več pretvorb iz ene kemične spojine urana v drugo, vključno s pretvorbo koncentratov uranove rude v UO3, pretvorbo UO3 v UO2, pretvorbo uranovih oksidov v UF4 ali UF6, pretvorbo UF4 v UF6, pretvorbo UF6 v UF4, pretvorbo UF4 v kovinski uran in pretvorbo uranovih fluoridov v UO2. Veliko ključnih postavk opreme obratov za pretvorbo urana je skupnih večjemu številu segmentov kemične predelovalne industrije. Na primer: vrste opreme, ki se uporabljajo v teh postopkih, so lahko: peči, rotacijske peči, reaktorji s fluidiziranim slojem, reaktorji s plamensko kolono, centrifuge za tekočine, destilacijske kolone in kolone za ekstrakcijo med tekočinama. Le malo teh postavk je na voljo v redni prodaji; večina se izdela v skladu z zahtevami in specifikacijami kupca. V nekaterih primerih je treba pri konstrukciji in izdelavi posvetiti posebno pozornost korozivnim lastnostim nekaterih uporabljenih kemikalij (HF, F2, ClF3 in uranovi fluoridi). Opozoriti je tudi treba, da je mogoče pri vseh postopkih za pretvorbo urana postavke opreme, ki vsaka zase niso posebej konstruirane ali izdelane za pretvorbo urana, povezati v take sisteme, ki so posebej konstruirani ali izdelani za uporabo pri pretvorbi urana.
7.1 Posebej konstruirani ali izdelani sistemi za pretvorbo koncentratov uranove rude v UO3
POJASNILO
Pretvorba koncentratov uranove rude v UO3 se lahko izvede tako, da se ruda najprej raztopi v dušikovi kislini in z uporabo topila, kot je tributilfosfat, izloči prečiščen uranilnitrat. Nato se uranilnitrat pretvori v UO3 s koncentriranjem in denitriranjem ali pa z nevtralizacijo s plinastim amoniakom, pri čemer nastane amonijev diuranat, zatem sledijo filtriranje, sušenje in kalciniranje.
7.2 Posebej konstruirani ali izdelani sistemi za pretvorbo UO3 v UF6
POJASNILO
Pretvorba UO3 v UF6 se lahko izvede neposredno s fluoriranjem. Postopek zahteva vir plinastega flouora ali klorovega trifluorida.
7.3 Posebej konstruirani ali izdelani sistemi za pretvorbo UO3 v UO2
POJASNILO
Pretvorbo UO3 v UO2 se lahko izvede z redukcijo UO3 s termično razgrajenim amoniakom ali vodikom.
7.4 Posebej konstruirani ali izdelani sistemi za pretvorbo UO2 v UF4
POJASNILO
Pretvorbo UO2 v UF4 se lahko izvede z reakcijo UO2 s plinastim vodikovim fluoridom (HF) pri 300 do 500 °C.
7.5 Posebej konstruirani ali izdelani sistemi za pretvorbo UF4 v UF6
POJASNILO
Pretvorba UF4 v UF6 se izvede z eksotermno reakcijo s fluorom v kolonskem reaktorju. UF6 se kondenzira iz vročih iztekajočih plinov tako, da se njihov tok spusti preko hladne pasti, ohlajene na –10 °C. Postopek zahteva vir plinastega fluora.
7.6 Posebej konstruirani ali izdelani sistemi za pretvorbo UF6 v kovinski uran
POJASNILO
Pretvorba UF4 v kovinski uran se izvede z redukcijo z magnezijem (za velike šarže) ali s kalcijem (za majhne šarže). Reakcija poteka pri temperaturah nad tališčem urana (1130 °C).
7.7 Posebej konstruirani ali izdelani sistemi za pretvorbo UF6 v UO2
POJASNILO
Pretvorba UF6 v UO2 se lahko izvede po enem od treh postopkov. Pri prvem postopku se z uporabo vodika in pare UF6 reducira in hidrolizira v UO2. Pri drugem se UF6 hidrolizira v vodni raztopini, doda se amoniak, da se obori amonijev diuranat, nato se diuranat reducira v UO2 z vodikom pri 820 °C. Pri tretjem postopku se v vodi vežejo plinasti UF6, CO2 in NH3, pri čemer kot oborina nastaja amonijev uranilkarbonat. Amonijev uranilkarbonat se veže s paro in vodikom pri 500 do 600 °C, pri čemer nastane UO2.
Pretvorba UF6 v UO2 je pogosto prva stopnja v obratu za izdelavo goriva.
7.8 Posebej konstruirani ali izdelani sistemi za pretvorbo UF6 v UF4
POJASNILO
Pretvorba UF6 v UF4 se izvede z redukcijo z vodikom.
3. člen
Za izvajanje dodatnega protokola skrbi Ministrstvo za okolje in prostor – Uprava Republike Slovenije za jedrsko varnost.
4. člen
Ta zakon začne veljati naslednji dan po objavi v Uradnem listu Republike Slovenije – Mednarodne pogodbe.
Št. 801-10/00-19/1
Ljubljana, dne 19. julija 2000
Predsednik
Državnega zbora
Republike Slovenije
Janez Podobnik, dr. med. l. r.